Responsive image
博碩士論文 etd-0711115-144142 詳細資訊
Title page for etd-0711115-144142
論文名稱
Title
探討胃上皮AGS細胞受幽門螺旋桿菌感染時HDGF的表現
Studies on hepatoma-derived growth factor expression during Helicobacter pylori infection in AGS cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
78
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-16
繳交日期
Date of Submission
2015-08-14
關鍵字
Keywords
肝癌衍生生長因子、細胞增生、細胞移行、胃癌、幽門螺旋桿菌、上皮 -間質轉化
epithelial-mesenchymal transition, Gastric cancer, proliferation, Helicobacter pylori, hepatoma-derived growth factor, migration
統計
Statistics
本論文已被瀏覽 5651 次,被下載 19
The thesis/dissertation has been browsed 5651 times, has been downloaded 19 times.
中文摘要
胃癌是世界癌症死亡原因之一,其中又好發於東亞和東南亞,包括台灣。胃癌的致病機轉,一般認為是經由多重因素及步驟所導致的;許多研究已證實,幽門螺旋桿菌是導致胃癌發生的的一個危險因子,受感染的人類胃上皮細胞,會形成胃發炎、胃潰瘍、最終導致胃癌。然而,幽門螺旋桿菌誘導胃癌的致病機制目前還不是很清楚,尤其是當胃部細胞受幽門螺旋桿菌感染後,其與細胞內的某些生長因子相互影響,進而導致胃癌的機制更是無法釐清。肝癌衍生生長因子(hepatoma-derived growth factor;HDGF) 是近期發現的一種新型生長因子,它在許多癌症之致病過程中都扮演很重要的角色。過去研究也指出,其過度表現會促使胃癌細胞之增生及轉移,並造成不良之預後。此外, HDGF 會藉由調控上皮-間質轉化 (epithelial mesenchymal transition;EMT),使腫瘤細胞進行轉移。本研究,利用胃上皮 AGS 細胞感染幽門螺旋桿菌之模式,探討 HDGF 與幽門螺旋桿菌導致胃癌間的關係,藉此了解更多胃癌發生之可能機轉。結果發現,以幽門螺旋桿菌 (ATCC49503) 感染之 AGS 細胞比未被幽門螺旋桿菌感染的 AGS 細胞,有較高的 HDGF 表現及釋放。在免疫組織化學染色方面,統計結果顯示 HDGF 在細胞核的表現與病人是否受幽門螺旋桿菌感染 (p < 0.0001)、有無嗜中性白血球浸潤 (p = 0.0002) 及有無腸化生 (p < 0.0001) 具有相關性,在統計學上皆具有顯著差異。而進一步探討 HDGF 在胃癌中扮演的角色時,發現在外加 HDGF 重組蛋白刺激下,會使 AGS 細胞增生,及提高 AGS 細胞之移行能力,也會使得 EMT 相關轉錄因子 snail、 slug 及 twist 的表現量增加,鈣黏著素E (E-cadherin) 表現下降及中間絲蛋白 (vimentin) 的表現增加,進而誘導細胞 EMT 的發生。總結以上的研究得知,以幽門螺旋桿菌感染 AGS 細胞會誘導 HDGF 的表現及釋放,進而使癌細胞增生及藉由 EMT 的調控使癌細胞發生轉移。
Abstract
Gastric carcinoma is one of the main causes of cancer death worldwide, especially in East and Southeast Asia, including Taiwan. Gastric cancer is the end result of a multifactorial, multistep process. Helicobacter pylori infection is a major risk factor in the development of gastric cancer. H. pylori causes a persistent infection in the human stomach, which can result in chronic gastritis, peptic ulcer disease and gastric cancer. However, the detailed mechanism of how H. pylori infection leads to the development of gastric cancer is still not clear. Particularly, the cellular factor(s) that contributes to H. pylori induced gastric carcinogenesis remains largely elusive. Hepatoma-derived growth factor (HDGF) is a novel growth factor involved in malignant progression of various types of cancer. HDGF overexpression is correlated with the proliferation state and lymph node metastasis of gastric cancer. The increased expression of HDGF is associated with poor prognosis of gastric cancers. Besides, HDGF regulates the invasiveness and epithelial–mesenchymal transition (EMT), which is critical to metastasis. Therefore, we investigate the expression profile of HDGF during H. pylori infection in AGS cells. In this study, we revealed that elevated HDGF expression and release higher in AGS cells after co-culture with H. pylori (ATCC 49503) than AGS cells. In immunohistochemical study, statistical analyses further revealed the nuclear HDGF expression was correlated positively with H. pylori infection (p < 0.0001), neutrophil infiltration (P = 0.0002), and intestinal metaplasia (p< 0.0001). Furthermore, adding exogenous HDGF treatment stimulated the proliferation, migration of AGS cells. HDGF treatment increased the EMT transcriptional factor (snail, slug, twist) expressions, as well as E-cadherin down-regulation and vimentin up-regulation of AGS cells. In summary, H. pylori infection of gastric epithelial cells induced the expression and release of HDGF, which might subsequently promote the tumorigenesis and metastasis of gastric cancer cells through modulation of EMT.
目次 Table of Contents
論文審定書 ------------------------------------------------------------------------------ i
致謝 --------------------------------------------------------------------------------------- ii
中文摘要 --------------------------------------------------------------------------------- iii
英文摘要 --------------------------------------------------------------------------------- v
目錄 -------------------------------------------------------------------------------------- vii
附表次/表次 ---------------------------------------------------------------------------- viii
附圖次/圖次 ----------------------------------------------------------------------------- ix
英文縮寫表 ------------------------------------------------------------------------------- x
第一章 前言 ---------------------------------------------------------------------------- 01
第一節 胃癌 -------------------------------------------------------------------------- 01
第二節 幽門螺旋桿菌與致病機制 ----------------------------------------------- 04
第三節 肝癌衍生生長因子 -------------------------------------------------------- 09
第四節 上皮-間質轉化 ------------------------------------------------------------- 11
第二章 研究動機 ----------------------------------------------------------------------- 13
第三章 研究架構 ----------------------------------------------------------------------- 14
第四章 材料與方法 -------------------------------------------------------------------- 15
第五章 結果 ----------------------------------------------------------------------------- 28
第六章 討論 ----------------------------------------------------------------------------- 35
第七章 結論 ----------------------------------------------------------------------------- 38
第八章 未來展望 ----------------------------------------------------------------------- 39
參考文獻 --------------------------------------------------------------------------------- 54
附表次/表次
附表一、 上皮細胞與間質細胞的分子標記及細胞特性 ----------------------- 12
表一、 評估 HDGF 蛋白質在胃部組織中的表現與臨床相關因子之關聯性 41
附圖次/圖次
附圖一、 導致胃癌的多重因子以及多重步驟 ---------------------------------- 03
附圖二、 幽門螺旋桿菌分解尿素中和胃酸的作用 ---------------------------- 05
附圖三、 VacA幫助幽門螺旋桿菌寄生在胃上皮細胞的途徑 --------------- 07
附圖四、 肝癌衍生生長因子結構圖 ---------------------------------------------- 10
圖一、 不同H. pylori與AGS細胞共同培養後之細胞型態 -------------------- 42
圖二、 AGS與H .pylori共同培養後之HDGF基因表現 ----------------------- 43
圖三、 AGS與H. pylori共同培養後之細胞內HDGF蛋白質表現 ------------ 44
圖四、 免疫螢光法分析AGS與H. pylori共同培養後HDGF蛋白質之表現 45
圖五、 AGS與H. pylori共同培養後之細胞上清液HDGF蛋白質的表現 46
圖六、 AGS 細胞受 H. pylori (ATCC49503) 感染後,釋放至細胞外的
HDGF 對細胞存活率的影響 ------------------------------------------------------- 47
圖七、 HDGF 對 AGS 細胞增生的影響 ----------------------------------------- 48
圖八、 HDGF 對 AGS 細胞移行能力分析 -------------------------------------- 49
圖九、 HDGF 對 AGS 細胞之 EMT 相關轉錄因子 mRNA 的影響 -------- 50
圖十、 HDGF對 AGS細胞之EMT相關分子標記 E-cadherin及vimentin
之 mRNA 的影響 ---------------------------------------------------------------- 51
圖十一、HDGF對 AGS細胞之EMT相關分子標記 E-cadherin及vimentin
之蛋白質的影響 ----------------------------------------------------------------- 52
圖十二、 利用免疫組織化學染色評估HDGF在胃部組織中的表現 -------- 53
參考文獻 References
1. Ang TL, Fock KM. Clinical epidemiology of gastric cancer. Singapore Med J 2014;55:621-8.
2. Leung WK, Wu MS, Kakugawa Y, Kim JJ, Yeoh KG, Goh KL, Wu KC, Wu DC, Sollano J, Kachintorn U, Gotoda T, Lin JT, You WC, Ng EK, Sung JJ. Screening for gastric cancer in Asia: current evidence and practice. Lancet Oncol 2008;9:279-87.
3. Carl-McGrath S. Gastric adenocarcinoma epidemiology, pathology. Cancer Therapy 2007;5:877-894.
4. Telford JL, Covacci A, Rappuoli R, Chiara P. Immunobiology of Helicobacter pylori infection. Curr Opin Immunol 1997;9:498-503.
5. Wroblewski LE, Peek RM, Jr., Wilson KT. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev 2010;23:713-39.
6. Kelley JR, Duggan JM. Gastric cancer epidemiology and risk factors. J Clin Epidemiol 2003;56:1-9.
7. Peter S, Beglinger C. Helicobacter pylori and gastric cancer: the causal relationship. Digestion 2007;75:25-35.
8. Chang WJ, Du Y, Zhao X, Ma LY, Cao GW. Inflammation-related factors predicting prognosis of gastric cancer. World J Gastroenterol 2014;20:4586-96.
9. Coussens LM, Werb Z. Inflammation and cancer. Nature 2002;420:860-7.
10. Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984;1:1311-5.
11. Parsonnet J, Friedman GD, Vandersteen DP, Chang Y, Vogelman JH, Orentreich N, Sibley RK. Helicobacter pylori infection and the risk of gastric carcinoma. N Engl J Med 1991;325:1127-31.
12. Goodwin CS, Armstrong JA. Microbiological aspects of Helicobacter pylori (Campylobacter pylori). Eur J Clin Microbiol Infect Dis 1990;9:1-13.
13. Piotrowski J, Slomiany A, Slomiany BL. Helicobacter pylori lipopolysaccharide inhibition of gastric somatostatin receptor: effect of sucralfate. Biochem Mol Biol Int 1997;42:545-51.
14. Phadnis SH, Parlow MH, Levy M, Ilver D, Caulkins CM, Connors JB, Dunn BE. Surface localization of Helicobacter pylori urease and a heat shock protein homolog requires bacterial autolysis. Infect Immun 1996;64:905-12.
15. Marshall BJ, Barrett LJ, Prakash C, McCallum RW, Guerrant RL. Urea protects Helicobacter (Campylobacter) pylori from the bactericidal effect of acid. Gastroenterology 1990;99:697-702.
16. Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 2006;19:449-90.
17. Schmitt W, Haas R. Genetic analysis of the Helicobacter pylori vacuolating cytotoxin: structural similarities with the IgA protease type of exported protein. Mol Microbiol 1994;12:307-19.
18. Jones KR, Whitmire JM, Merrell DS. A Tale of Two Toxins: Helicobacter Pylori CagA and VacA Modulate Host Pathways that Impact Disease. Front Microbiol 2010;1:115.
19. Cover TL, Blanke SR. Helicobacter pylori VacA, a paradigm for toxin multifunctionality. Nat Rev Microbiol 2005;3:320-32.
20. Morbiato L, Tombola F, Campello S, Del Giudice G, Rappuoli R, Zoratti M, Papini E. Vacuolation induced by VacA toxin of Helicobacter pylori requires the intracellular accumulation of membrane permeant bases, Cl(-) and water. FEBS Lett 2001;508:479-83.
21. Kimura M, Goto S, Wada A, Yahiro K, Niidome T, Hatakeyama T, Aoyagi H, Hirayama T, Kondo T. Vacuolating cytotoxin purified from Helicobacter pylori causes mitochondrial damage in human gastric cells. Microb Pathog 1999;26:45-52.
22. Galmiche A, Rassow J, Doye A, Cagnol S, Chambard JC, Contamin S, de Thillot V, Just I, Ricci V, Solcia E, Van Obberghen E, Boquet P. The N-terminal 34 kDa fragment of Helicobacter pylori vacuolating cytotoxin targets mitochondria and induces cytochrome c release. EMBO J 2000;19:6361-70.
23. Papini E, Satin B, Norais N, de Bernard M, Telford JL, Rappuoli R, Montecucco C. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J Clin Invest 1998;102:813-20.
24. Supajatura V, Ushio H, Wada A, Yahiro K, Okumura K, Ogawa H, Hirayama T, Ra C. Cutting edge: VacA, a vacuolating cytotoxin of Helicobacter pylori, directly activates mast cells for migration and production of proinflammatory cytokines. J Immunol 2002;168:2603-7.
25. Atherton JC, Cao P, Peek RM, Jr., Tummuru MK, Blaser MJ, Cover TL. Mosaicism in vacuolating cytotoxin alleles of Helicobacter pylori. Association of specific vacA types with cytotoxin production and peptic ulceration. J Biol Chem 1995;270:17771-7.
26. Atherton JC, Peek RM, Jr., Tham KT, Cover TL, Blaser MJ. Clinical and pathological importance of heterogeneity in vacA, the vacuolating cytotoxin gene of Helicobacter pylori. Gastroenterology 1997;112:92-9.
27. Akopyants NS, Clifton SW, Kersulyte D, Crabtree JE, Youree BE, Reece CA, Bukanov NO, Drazek ES, Roe BA, Berg DE. Analyses of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 1998;28:37-53.
28. Wen S, Moss SF. Helicobacter pylori virulence factors in gastric carcinogenesis. Cancer Lett 2009;282:1-8.
29. Higashi H, Tsutsumi R, Fujita A, Yamazaki S, Asaka M, Azuma T, Hatakeyama M. Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci U S A 2002;99:14428-33.
30. Higashi H, Tsutsumi R, Muto S, Sugiyama T, Azuma T, Asaka M, Hatakeyama M. SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 2002;295:683-6.
31. Kim SY, Lee YC, Kim HK, Blaser MJ. Helicobacter pylori CagA transfection of gastric epithelial cells induces interleukin-8. Cell Microbiol 2006;8:97-106.
32. Aaronson SA. Growth factors and cancer. Science 1991;254:1146-53.
33. McNamara DA, Harmey JH, Walsh TN, Redmond HP, Bouchier-Hayes DJ. Significance of angiogenesis in cancer therapy. Br J Surg 1998;85:1044-55.
34. Schirmacher P, Odenthal M, Steinberg P, Dienes HP. [Growth factors in liver regeneration and hepatocarcinogenesis]. Verh Dtsch Ges Pathol 1995;79:55-60.
35. Nakamura H, Kambe H, Egawa T, Kimura Y, Ito H, Hayashi E, Yamamoto H, Sato J, Kishimoto S. Partial purification and characterization of human hepatoma-derived growth factor. Clin Chim Acta 1989;183:273-84.
36. Abouzied MM, El-Tahir HM, Prenner L, Haberlein H, Gieselmann V, Franken S. Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity. J Biol Chem 2005;280:10945-54.
37. Sue SC, Chen JY, Lee SC, Wu WG, Huang TH. Solution structure and heparin interaction of human hepatoma-derived growth factor. J Mol Biol 2004;343:1365-77.
38. Everett AD, Stoops T, McNamara CA. Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells. J Biol Chem 2001;276:37564-8.
39. Enomoto H, Yoshida K, Kishima Y, Kinoshita T, Yamamoto M, Everett AD, Miyajima A, Nakamura H. Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation. Hepatology 2002;36:1519-27.
40. Oliver JA, Al-Awqati Q. An endothelial growth factor involved in rat renal development. J Clin Invest 1998;102:1208-19.
41. Hu TH, Huang CC, Liu LF, Lin PR, Liu SY, Chang HW, Changchien CS, Lee CM, Chuang JH, Tai MH. Expression of hepatoma-derived growth factor in hepatocellular carcinoma. Cancer 2003;98:1444-56.
42. Yoshida K, Nakamura H, Okuda Y, Enomoto H, Kishima Y, Uyama H, Ito H, Hirasawa T, Inagaki S, Kawase I. Expression of hepatoma-derived growth factor in hepatocarcinogenesis. J Gastroenterol Hepatol 2003;18:1293-301.
43. Ren H, Tang X, Lee JJ, Feng L, Everett AD, Hong WK, Khuri FR, Mao L. Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer. J Clin Oncol 2004;22:3230-7.
44. Iwasaki T, Nakagawa K, Nakamura H, Takada Y, Matsui K, Kawahara K. Hepatoma-derived growth factor as a prognostic marker in completely resected non-small-cell lung cancer. Oncol Rep 2005;13:1075-80.
45. Lepourcelet M, Tou L, Cai L, Sawada J, Lazar AJ, Glickman JN, Williamson JA, Everett AD, Redston M, Fox EA, Nakatani Y, Shivdasani RA. Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF). Development 2005;132:415-27.
46. Yamamoto S, Tomita Y, Hoshida Y, Takiguchi S, Fujiwara Y, Yasuda T, Doki Y, Yoshida K, Aozasa K, Nakamura H, Monden M. Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma. Clin Cancer Res 2006;12:117-22.
47. Uyama H, Tomita Y, Nakamura H, Nakamori S, Zhang B, Hoshida Y, Enomoto H, Okuda Y, Sakon M, Aozasa K, Kawase I, Hayashi N, Monden M. Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer. Clin Cancer Res 2006;12:6043-8.
48. Yamamoto S, Tomita Y, Hoshida Y, Morii E, Yasuda T, Doki Y, Aozasa K, Uyama H, Nakamura H, Monden M. Expression level of hepatoma-derived growth factor correlates with tumor recurrence of esophageal carcinoma. Ann Surg Oncol 2007;14:2141-9.
49. Chang KC, Tai MH, Lin JW, Wang CC, Huang CC, Hung CH, Chen CH, Lu SN, Lee CM, Changchien CS, Hu TH. Hepatoma-derived growth factor is a novel prognostic factor for gastrointestinal stromal tumors. Int J Cancer 2007;121:1059-65.
50. Hsu SS, Chen CH, Liu GS, Tai MH, Wang JS, Wu JC, Kung ML, Chan EC, Liu LF. Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas. J Neurooncol 2012;107:101-9.
51. Chen X, Yun J, Fei F, Yi J, Tian R, Li S, Gan X. Prognostic value of nuclear hepatoma-derived growth factor (HDGF) localization in patients with breast cancer. Pathol Res Pract 2012;208:437-43.
52. Lin YW, Li CF, Chen HY, Yen CY, Lin LC, Huang CC, Huang HY, Wu PC, Chen CH, Chen SC, Tai MH. The expression and prognostic significance of hepatoma-derived growth factor in oral cancer. Oral Oncol 2012;48:629-35.
53. Greenburg G, Hay ED. Epithelia suspended in collagen gels can lose polarity and express characteristics of migrating mesenchymal cells. J Cell Biol 1982;95:333-9.
54. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest 2009;119:1420-8.
55. Miyazono K. Transforming growth factor-beta signaling in epithelial-mesenchymal transition and progression of cancer. Proc Jpn Acad Ser B Phys Biol Sci 2009;85:314-23.
56. Zavadil J, Bottinger EP. TGF-beta and epithelial-to-mesenchymal transitions. Oncogene 2005;24:5764-74.
57. Crosby LM, Waters CM. Epithelial repair mechanisms in the lung. Am J Physiol Lung Cell Mol Physiol 2010;298:L715-31.
58. Lopez D, Niu G, Huber P, Carter WB. Tumor-induced upregulation of Twist, Snail, and Slug represses the activity of the human VE-cadherin promoter. Arch Biochem Biophys 2009;482:77-82.
59. Yilmaz M, Christofori G, Lehembre F. Distinct mechanisms of tumor invasion and metastasis. Trends Mol Med 2007;13:535-41.
60. Jamora C, Fuchs E. Intercellular adhesion, signalling and the cytoskeleton. Nat Cell Biol 2002;4:E101-8.
61. Carneiro F, Huntsman DG, Smyrk TC, Owen DA, Seruca R, Pharoah P, Caldas C, Sobrinho-Simoes M. Model of the early development of diffuse gastric cancer in E-cadherin mutation carriers and its implications for patient screening. J Pathol 2004;203:681-7.
62. Yin Y, Grabowska AM, Clarke PA, Whelband E, Robinson K, Argent RH, Tobias A, Kumari R, Atherton JC, Watson SA. Helicobacter pylori potentiates epithelial:mesenchymal transition in gastric cancer: links to soluble HB-EGF, gastrin and matrix metalloproteinase-7. Gut 2010;59:1037-45.
63. Dixon MF, Genta RM, Yardley JH, Correa P. Classification and grading of gastritis. The updated Sydney System. International Workshop on the Histopathology of Gastritis, Houston 1994. Am J Surg Pathol 1996;20:1161-81.
64. Hentschel E, Brandstatter G, Dragosics B, Hirschl AM, Nemec H, Schutze K, Taufer M, Wurzer H. Effect of ranitidine and amoxicillin plus metronidazole on the eradication of Helicobacter pylori and the recurrence of duodenal ulcer. N Engl J Med 1993;328:308-12.
65. Shimoyama T, Everett SM, Dixon MF, Axon AT, Crabtree JE. Chemokine mRNA expression in gastric mucosa is associated with Helicobacter pylori cagA positivity and severity of gastritis. J Clin Pathol 1998;51:765-70.
66. Backhed F, Torstensson E, Seguin D, Richter-Dahlfors A, Rokbi B. Helicobacter pylori infection induces interleukin-8 receptor expression in the human gastric epithelium. Infect Immun 2003;71:3357-60.
67. El-Zimaity HM, Ramchatesingh J, Saeed MA, Graham DY. Gastric intestinal metaplasia: subtypes and natural history. J Clin Pathol 2001;54:679-83.
68. Tao F, Ye MF, Sun AJ, Lv JQ, Xu GG, Jing YM, Wang W. Prognostic significance of nuclear hepatoma-derived growth factor expression in gallbladder cancer. World J Gastroenterol 2014;20:9564-9.
69. Bianchi ME. DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol 2007;81:1-5.
70. Castellheim A, Brekke OL, Espevik T, Harboe M, Mollnes TE. Innate immune responses to danger signals in systemic inflammatory response syndrome and sepsis. Scand J Immunol 2009;69:479-91.
71. Coffelt SB, Scandurro AB. Tumors sound the alarmin(s). Cancer Res 2008;68:6482-5.
72. Tahara E. Abnormal growth factor/cytokine network in gastric cancer. Cancer Microenviron 2008;1:85-91.
73. Watanabe T, Tsuge H, Imagawa T, Kise D, Hirano K, Beppu M, Takahashi A, Yamaguchi K, Fujiki H, Suganuma M. Nucleolin as cell surface receptor for tumor necrosis factor-alpha inducing protein: a carcinogenic factor of Helicobacter pylori. J Cancer Res Clin Oncol 2010;136:911-21.
74. Chen SC, Hu TH, Huang CC, Kung ML, Chu TH, Yi LN, Huang ST, Chan HH, Chuang JH, Liu LF, Wu HC, Wu DC, Chang MC, Tai MH. Hepatoma-derived growth factor/nucleolin axis as a novel oncogenic pathway in liver carcinogenesis. Oncotarget 2015.
75. Mao J, Xu Z, Fang Y, Wang H, Xu J, Ye J, Zheng S, Zhu Y. Hepatoma-derived growth factor involved in the carcinogenesis of gastric epithelial cells through promotion of cell proliferation by Erk1/2 activation. Cancer Sci 2008;99:2120-7.
76. Lee KH, Choi EY, Kim MK, Lee SH, Jang BI, Kim TN, Kim SW, Song SK, Kim JR, Jung BC. Hepatoma-derived growth factor regulates the bad-mediated apoptotic pathway and induction of vascular endothelial growth factor in stomach cancer cells. Oncol Res 2010;19:67-76.
77. Meng J, Xie W, Cao L, Hu C, Zhe Z. shRNA targeting HDGF suppressed cell growth and invasion of squamous cell lung cancer. Acta Biochim Biophys Sin (Shanghai) 2010;42:52-7.
78. Watanabe T, Hirano K, Takahashi A, Yamaguchi K, Beppu M, Fujiki H, Suganuma M. Nucleolin on the cell surface as a new molecular target for gastric cancer treatment. Biol Pharm Bull 2010;33:796-803.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code