Responsive image
博碩士論文 etd-0711115-150748 詳細資訊
Title page for etd-0711115-150748
論文名稱
Title
在矽光學平台上之1.55 μm頻段鍺光偵測器設計與研究
Design and fabrication of Germanium Photodetector Based on Silicon Photonics Platform
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
89
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-22
繳交日期
Date of Submission
2015-08-11
關鍵字
Keywords
電流-電壓曲線圖、吸收長度、國家奈米元件實驗室、鍺光偵測器、對接式耦合
Germanium photodetector, Butt coupling, I-Vcurve, absorbtion length, NDL
統計
Statistics
本論文已被瀏覽 5714 次,被下載 2068
The thesis/dissertation has been browsed 5714 times, has been downloaded 2068 times.
中文摘要
本論文以矽光學作為平台設計與研究積體光路之1.55 μm頻段鍺光偵測器。在光纖通訊的系統中,大部分的矽光子元件都是使用SOI晶圓為基本架構,其擁有高折射率差的基材,SiO2的折射率為1.44而Silicon為3.47,它的好處在於減少光在傳輸中所損失的能量、縮小元件的體積並且讓我們在元件設計上擁有更高的自由度,也使積體光路能夠更密集,也因為其基板為Silicon,與現下成熟的CMOS製程工藝所用的基材相同,使其具有相當高的兼容性,使我們在製作矽光子光電元件時能減少研發時間。矽光子技術在近幾年的發展下,以能夠將個別的光學元件如 光開關、光調變器、雷射和光偵測器製作完成且具有不錯的表現,在現在與將來會把各個元件都做在同一個基板上,變成積體化的光路,藉由波導來傳輸光訊號。在光電元件中,訊號接收端-光偵測器扮演重要的腳色,而以金屬鍺與矽基板結合作為鍺光偵測器,更是未來積體化的主軸之一。
光偵測器有多種結構,如累崩型、PIN和金半金光偵測器,其中,我們以PIN光偵測器為研究主軸,而PIN型光偵測器中之漸進式耦合型所需要的吸收長度較長,所以我們設計了兩種對接式耦合型光偵測器(Type2&Type3)來縮短其吸收長度。以光學角度來說,光訊號直接射入金屬鍺能使其更直接地吸收,降低吸收長度,以電性來說,將偏壓加到約-4 V時,在光場傳播在鍺的區域中,電場的強度幾乎都落在104 V/cm,這個能讓飄移速率達到飽和約106 cm/s,使光訊號在被鍺吸收時能夠以最快的速度向兩邊擷取出電訊號。
在NDL研發製作之鍺光偵測器目前已量到I-V 曲線圖,三種Type皆有二極體的特性,鍺長晶部分,在測試片中經由XRD分析,其FWHM已達到250 arcsec,
進一步,我們將會製作實際的鍺光偵測器元件,並進行量測,這部分的研究發展,仍在持續進行中。
Abstract
In this paper, we design and study 1550 nm band Germanium photodetector based on silicon photonics platform. In optical fiber communication systems, Most of the silicon photonic components are using SOI wafers as the basic architecture. It has a high refractive index difference between the core and cladding. The refractive index of Silicon and Oxide are about 3.47 and 1.44 respectively. It has the advantage of reducing the loss and the size of component. In recent years, the development of siliconphotonics is quickly. It can fabricate optical switch, optical modulator, optical laser and photodetector individually. In the future, it will combine all the component into a chip. In this condition, the integrated of photodetector play a important role. The combination of germanium and silicon substrate as germanium photodetector, is one of the main issue of the future integrated.
There are various structures of photodetector. Among them, we set the PIN photodetector for the research project. In PIN photodetector, evanescent coupling need longer absorption length. We design the butt coupling mode photodetector Type2 and Type3 to reduce the absorption length. In simulation, the optical signal can directly inject into germanium and be absorbed.Reducing the length from 25μm to 14 μm.
The fabrication of Germanium photodetector in NDL can get the I-V curve.There is characteristic of diode in three types of photodetector. In XRD analysis, the test wafer FWHM is about 250 arcsec. Moreover, we will fabricated the real Germanium photodetector and measure it. This research and development will still ongoing.
目次 Table of Contents
摘要 i
Abstract ii
圖次 v
表次 viii
第一章 緒論 1
1.1 矽光子技術(Silicon Photonics technology) 1
1.2 論文架構 4
第二章 基礎理論 5
2.1光柵耦合PIN 光偵測器 5
2.1.1 吸光層材料 6
2.1.2 PIN光偵測器結構及工作原理 7
2.1.3 PIN光偵測器異質接面 8
2.2光偵測器參數 11
2.2.1 量子效率QE(Quantum efficiency) 11
2.2.2 光響應度(Responsivity) 12
第三章 光偵測器元件模擬 13
3.1 光束傳播法(Beam Propagation Method, BPM) 13
3.2 鍺光偵測器-結構與光模擬 16
3.2.1 鍺光偵測器-Type1 16
3.2.2 鍺光偵測器-Type2 19
3.2.3 鍺光偵測器-Type3 25
3.3光偵測器-電模擬 27
3.3.1鍺光偵測器-Type1 28
3.3.2鍺光偵測器-Type2 30
3.3.3鍺光偵測器-Type3 33
第四章 元件實作 35
4.1 儀器簡介 36
4.2 第一階段-被動元件製作 44
4.3 第二階段-離子佈植 53
4.4 第三階段-鍺長晶 57
4.5 第四階段-金屬電極製作 65
第五章 元件量測結果 68
5.1 IME-鍺光偵測器量測結果 68
5.2 NDL-鍺光偵測器量測結果 72
第六章 結論 77
參考文獻 78
參考文獻 References
[1] Liu, Jifeng, et al. "Ge-on-Si optoelectronics." Thin Solid Films 520.8 (2012): 3354-3360.
[2] Luan, Hsin-Chiao, et al. "High-quality Ge epilayers on Si with low threading-dislocation densities." Applied Physics Letters 75.19 (1999): 2909-2911.
[3] Vivien, Laurent, et al. "Zero-bias 40Gbit/s germanium waveguide photodetector on silicon." Optics express 20.2 (2012): 1096-1101.
[4] Loh, T. H., et al. "Ultrathin low temperature SiGe buffer for the growth of high quality Ge epilayer on Si (100) by ultrahigh vacuum chemical vapor deposition."Applied Physics Letters 90.9 (2007): 2108.
[5] Liow, Tsung-Yang, et al. "Silicon optical interconnect device technologies for 40 Gb/s and beyond." Selected Topics in Quantum Electronics, IEEE Journal of 19.2 (2013): 8200312-8200312.
[6] Dong, Po, et al. "Low V pp, ultralow-energy, compact, high-speed silicon electro-optic modulator." Optics Express 17.25 (2009): 22484-22490.
[7] Xiao, Xi, et al. "44-Gb/s silicon microring modulators based on zigzag PN junctions." Photonics Technology Letters, IEEE 24.19 (2012): 1712-1714.
[8] Virot, Léopold, et al. "High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications [Invited]." Photonics Research 1.3 (2013): 140-147.
[9] Vivien, Laurent, et al. "42 GHz pin Germanium photodetector integrated in a silicon-on-insulator waveguide." Optics express 17.8 (2009): 6252-6257.
[10] Ramaswamy, Anand, et al. "A high power Ge nip waveguide photodetector on silicon-on-insulator substrate." The 6th International Conference on Group IV Photonics, San Francisco, California. 2009.
[11] DeRose, Christopher T., et al. "Ultra compact 45 GHz CMOS compatible Germanium waveguide photodiode with low dark current." Optics express 19.25 (2011): 24897-24904.
[12] Liao, Shirong, et al. "36 GHz submicron silicon waveguide germanium photodetector." Optics express 19.11 (2011): 10967-10972.
[13] Zhang, Yi, et al. "A high-responsivity photodetector absent metal-germanium direct contact." Opt. Express 22.9 (2014): 11367-11375.
[14] Michel, Jurgen, Jifeng Liu, and Lionel C. Kimerling. "High-performance Ge-on-Si photodetectors." Nature Photonics 4.8 (2010): 527-534.
[15] Yin, Tao, et al. "31 GHz Ge nip waveguide photodetectors on Silicon-on-Insulator substrate." Optics Express 15.21 (2007): 13965-13971.
[16] Colace, Lorenzo, et al. "Low dark-current germanium-on-silicon near-infrared detectors." IEEE Photonics Technology Letters 22.19 (2007): 1813-1815.
[17] Dumas, Derek. Germanium on silicon photonics. Diss. University of Glasgow, 2015.
[18] Fiori, Gianluca, et al. "Velocity saturation in few-layer MoS2 transistor." Applied Physics Letters 103.23 (2013): 233509.
[19] Jacoboni, C., et al. "Electron drift velocity and diffusivity in germanium."Physical Review B 24.2 (1981): 1014.
[20] Luan, Hsin-Chiao, et al. "High-quality Ge epilayers on Si with low threading-dislocation densities." Applied Physics Letters 75.19 (1999): 2909-2911.
[21] “Beamprop Version 8.2 User Guide”, Chapter2
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code