Responsive image
博碩士論文 etd-0711117-201256 詳細資訊
Title page for etd-0711117-201256
論文名稱
Title
噴霧冷卻應用於高功率電子元件之熱流特性分析
Spray Cooling Thermal and Flow Characteristics for High Power Electronic Devices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-26
繳交日期
Date of Submission
2017-08-15
關鍵字
Keywords
μIPI、μPIV、噴霧冷卻、高功率電子元件、LED散熱、壓電霧化片
LED cooling, μPIV, μIPI, High powered electronic devices, Spray cooling, Piezoelectric atomizer film
統計
Statistics
本論文已被瀏覽 5707 次,被下載 29
The thesis/dissertation has been browsed 5707 times, has been downloaded 29 times.
中文摘要
本實驗目的為利用陣列式微孔壓電霧化片作為主要噴嘴,建構一個以高功率電子元件(≥100W COB LED) 為主的微型噴霧冷卻系統,研究不同的實驗參數條件下,此微型噴霧冷卻系統的各種物理現象。本實驗量測噴霧速度、噴霧粒徑以及溫度,並且使用先進光學量測系統(μPIV、μIPI、LIF及IR detector)作為主要的量測工具,量測過程中改變微型噴霧冷卻系統之實驗參數,如壓電霧化片孔洞直徑、質量流率、熱通量和噴霧距離,探討對於電子元件散熱效果影響,同時將觀測霧化液滴在飛行過程中的軌跡與粒徑大小變化,研究其物理現象。
Abstract
The purpose of this experiment is to use the piezoelectric atomizer film as a nozzle, set up a high-power electronic devices (≥ 100W COB LED) based micro-spray cooling system to study the different experimental parameters under the conditions of this micro-spray cooling system of various physical phenomenon. In this experiment, the spray velocity, spray particle size and temperature were measured, and the advanced optical measurement system (μPIV, μIPI, LIF and IR detector) was used as the main measurement tool. The experimental parameters of the micro-spray cooling system were changed during the measurement, such as porcelain diameter, mass flow rate, heat flux and spray distance, to discuss the effect of heat dissipation on electronic devices, while observing the change of trajectory and particle size of atomized droplets during flight and study their physical phenomena.
目次 Table of Contents
誌謝 i
摘要 ii
ABSTRACT iii
CONTENTS iv
LIST OF TABLES vi
LIST OF FIGURES vii
NOMENCLATURE x
CHAPTER 1 1
INTRODUCTION 1
1-1 Background 1
1-2 Research principle 2
1-3 Literature survey 4
1-4 Research purpose 15
CHAPTER 2 19
EXPERIMENTAL EQUIPMENT 19
2-1 Optical measurement system 19
2-2 Microporous piezoelectric atomization 21
2-3 High Speed Image Induction Capture System 22
2-4 Data logger system 22
2-5 Other peripheral equipment 23
CHAPTER 3 35
EXPERIMENTAL METHODS AND PROCEDURES 35
3-1 Spray cooling system 35
3-2 Optical measurement system 37
3-3 Heater test model 41
CHAPTER 4 46
THEORETICAL ANALYSIS 46
4-1 Weber (We) number 46
4-2 Reynolds (Re) number 47
4-3 Heat flux 47
4-4 Heat transfer coeffcient 48
CHAPTER 5 50
UNCERTAINTY ANALYSIS 50
CHAPTER 6 54
RESULTS AND DISCUSSIONS 54
6-1 Spray flow field 54
6-2 μPIV flow field 56
6-3 IPI particle size measurement 58
6-4 LIF Temperature field 59
6-5 Boiling curve distribution 60
CHAPTER 7 98
CONCLUSION AND RECOMMENDATION 98
7-1 Conclusion 98
7-2 Recommendation 99
REFERENCES 101
APPENDIX A 108
參考文獻 References
[1] D. Sun, Ph. D. 2012 Challenges and Opportunities for High Power White LED Development, 2012, Available at: http://apps1.eere.energy.gov/buildings/publications/pdfs/ssl/sun_development_2012rdworkshop.pdf., 10/21/2014
[2] 國科會工程技術發展處能源學門, 102年度能源學門重點規劃書, 2013, Available at: http://www.etop.org.tw/dsp/E72.php?c=dspfile&id=YTUyNTYyNzdjYTZjYjJjZTA5ZGE1NTk1YmE3ZDI3N2MucGRm, 10/21/2014
[3] L. l. smart, LED & Lighting Glossary, 2013, Available at: http://www.ledlightsmart.co.uk/led-and-lighting-glossary.html, 12/09/2013
[4] Wikipedia, Nick Holonyak, 2014, Available at: http://en.wikipedia.org/wiki/Nick_Holonyak#cite_note-chisuntimes-1, 10/16/2014
[5] CREE, Cree® XLamp® Long-Term Lumen Maintenance, 2009, Available at: https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDIQFjAB&url=http://www.avsforum.com/attachments/11092&ei=XvNGVOjrBsbAmAXwpoDYAw&usg=AFQjCNHKo1Hiw9RkOoo-N4AFM-QIxx1EZQ&sig2=PTgNkNYO8mKzqMUmzFUxGA&bvm=bv.77880786,d.dGY&cad=rja, 10/22/2014
[6] S. S. Hsieh, T. C. Fan, and H. H. Tsai, "Spray cooling characteristics of water and R-134a. Part I: nucleate boiling." International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5703-5712.
[7] S. S. Hsieh, T. C. Fan, and H. H. Tsai, "Spray cooling characteristics of water and R-134a. Part II: transient cooling." International Journal of Heat and Mass Transfer, Vol. 47, 2004, pp. 5713-5724.
[8] J. Kim, "Spray cooling heat transfer: The state of the art." International Journal of Heat and Fluid Flow, Vol. 28, 2007, pp. 753-767.
[9] L. Lin and R. Ponnappan, "Heat transfer characteristics of spray cooling in a closed loop." International Journal of Heat and Mass Transfer, Vol. 46, 2003, pp. 3737-3746.
[10] A. G. Pautsch and T. A. Shedd, "Spray impingement cooling with single- and multiple-nozzle arrays. Part I: Heat transfer data using FC-72." International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3167-3175.
[11] T. A. Shedd and A. G. Pautsch, "Spray impingement cooling with single- and multiple-nozzle arrays. Part II: Visualization and empirical models." International Journal of Heat and Mass Transfer, Vol. 48, 2005, pp. 3176-3184.
[12] L. H. J. Wachters and N. A. J. Westerling, "The heat transfer from a hot wall to impinging water drops in the spheroidal state." Chemical Engineering Science, Vol. 21, 1966, pp. 1047-1056.
[13] W. M. Grissom and F. A. Wierum, "Liquid spray cooling of a heated surface." International Journal of Heat and Mass Transfer, Vol. 24, 1981, pp. 261-271.
[14] K. J. Choi and S. C. Yao, "Mechanisms of film boiling heat transfer of normally impacting spray." International Journal of Heat and Mass Transfer, Vol. 30, 1987, pp. 311-318.
[15] M. Ghodbane and J. P. Holman, "Experimental study of spray cooling with Freon-113." International Journal of Heat and Mass Transfer, Vol. 34, 1991, pp. 1163-1174.
[16] M. R. Pais, L. C. Chow, and E. T. Mahefkey, "Surface Roughness and Its Effects on the Heat Transfer Mechanism in Spray Cooling." Journal of Heat Transfer, Vol. 114, 1992, pp. 211-219.
[17] K. A. Estes and I. Mudawar, "Correlation of sauter mean diameter and critical heat flux for spray cooling of small surfaces." International Journal of Heat and Mass Transfer, Vol. 38, 1995, pp. 2985-2996.
[18] S. Chandra, M. di Marzo, Y. M. Qiao, and P. Tartarini, "Effect of liquid-solid contact angle on droplet evaporation." Fire Safety Journal, Vol. 27, 1996, pp. 141-158.
[19] I. Mudawar and K. A. Estes, "Optimizing and Predicting CHF in Spray Cooling of a Square Surface." Journal of Heat Transfer, Vol. 118, 1996, pp. 672-679.
[20] J. D. Bernardin, C. J. Stebbins, and I. Mudawar, "Mapping of impact and heat transfer regimes of water drops impinging on a polished surface." International Journal of Heat and Mass Transfer, Vol. 40, 1997, pp. 247-267.
[21] K. Oliphant, B. W. Webb, and M. Q. McQuay, "An experimental comparison of liquid jet array and spray impingement cooling in the non-boiling regime." Experimental Thermal and Fluid Science, Vol. 18, 1998, pp. 1-10.
[22] K. i. Yoshida, Y. Abe, T. Oka, Y. H. Mori, and A. Nagashima, "Spray Cooling Under Reduced Gravity Condition." Journal of Heat Transfer, Vol. 123, 2000, pp. 309-318.
[23] M. Arik, J. Petroski, and S. Weaver, "Thermal challenges in the future generation solid state lighting applications: light emitting diodes." Thermal and Thermomechanical Phenomena in Electronic Systems, Vol. 2002, pp. 113-120.
[24] N. Narendran, L. Deng, R. M. Pysar, Y. Gu, and H. Yu, "Performance characteristics of high-power light-emitting diodes." Vol. 5187, 2004, pp. 267-275.
[25] T. Acikalin, S. V. Garimella, J. Petroski, and A. Raman, "Optimal design of miniature piezoelectric fans for cooling light emitting diodes." Thermal and Thermomechanical Phenomena in Electronic Systems, Vol. 1, 2004, pp. 663-671.
[26] Z. Kai, X. Guo Wei, W. Cell, G. Hong Wei, M. M. F. Yuen, P. C. H. Chan, and B. Xu, "Study on Thermal Interface Material with Carbon Nanotubes and Carbon Black in High-Brightness LED Packaging with Flip-Chip." Electronic Components and Technology Conference, Vol. 2005, pp. 60-65.
[27] C. Jen Hau, L. Chun Kai, C. Yu Lin, and T. Ra Min, "Cooling performance of silicon-based thermoelectric device on high power LED." Thermoelectrics, 2005. ICT 2005. 24th International Conference on, Vol. 2005, pp. 53-56.
[28] C. C. Hsieh and S. C. Yao, "Evaporative heat transfer characteristics of a water spray on micro-structured silicon surfaces." International Journal of Heat and Mass Transfer, Vol. 49, 2006, pp. 962-974.
[29] S. S. Hsieh and C. H. Tien, "R-134a spray dynamics and impingement cooling in the non-boiling regime." International Journal of Heat and Mass Transfer, Vol. 50, 2007, pp. 502-512.
[30] L. Xiaobing and L. Sheng, "A Microjet Array Cooling System for Thermal Management of High-Brightness LEDs." Advanced Packaging, IEEE Transactions on, Vol. 30, 2007, pp. 475-484.
[31] M. R. O. Panão and A. L. N. Moreira, "Heat transfer correlation for intermittent spray impingement: A dynamic approach." International Journal of Thermal Sciences, Vol. 48, 2009, pp. 1853-1862.
[32] X. y. Lu, T. C. Hua, M. j. Liu, and Y. x. Cheng, "Thermal analysis of loop heat pipe used for high-power LED." Thermochimica Acta, Vol. 493, 2009, pp. 25-29.
[33] T. Kristyadi, V. Deprédurand, G. Castanet, F. Lemoine, S. S. Sazhin, A. Elwardany, E. M. Sazhina, and M. R. Heikal, "Monodisperse monocomponent fuel droplet heating and evaporation." Fuel, Vol. 89, 2010, pp. 3995-4001.
[34] Y. Deng and J. Liu, "A liquid metal cooling system for the thermal management of high power LEDs." International Communications in Heat and Mass Transfer, Vol. 37, 2010, pp. 788-791.
[35] J. C. Wang, R. T. Wang, T. L. Chang, and D. S. Hwang, "Development of 30 Watt high-power LEDs vapor chamber-based plate." International Journal of Heat and Mass Transfer, Vol. 53, 2010, pp. 3990-4001.
[36] J.-C. Wang, "Thermal investigations on LED vapor chamber-based plates." International Communications in Heat and Mass Transfer, Vol. 38, 2011, pp. 1206-1212.
[37] W. L. Cheng, F. Y. Han, Q. N. Liu, and H. L. Fan, "Spray characteristics and spray cooling heat transfer in the non-boiling regime." Energy, Vol. 36, 2011, pp. 3399-3405.
[38] W. L. Cheng, F. Y. Han, Q. N. Liu, R. Zhao, and H. l. Fan, "Experimental and theoretical investigation of surface temperature non-uniformity of spray cooling." Energy, Vol. 36, 2011, pp. 249-257.
[39] J. Li, B. Ma, R. Wang, and L. Han, "Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs." Microelectronics Reliability, Vol. 51, 2011, pp. 2210-2215.
[40] P. Anithambigai, K. Dinash, D. Mutharasu, S. Shanmugan, and C. K. Lim, "Thermal analysis of power LED employing dual interface method and water flow as a cooling system." Thermochimica Acta, Vol. 523, 2011, pp. 237-244.
[41] T. M. Roffi, I. Idris, K. Uchida, S. Nozaki, N. Sugiyama, H. Morisaki, and F. X. N. Soelami, "Improvement of high-power-white-LED lamp performance by liquid injection." Electrical Engineering and Informatics, Vol. 2011, pp. 1-6.
[42] W. Hsun You, H. Cheng, and C. Chin Tai, "Specific design and implementation of a piezoelectric droplet actuator for evaporative cooling of free space." Nano/Micro Engineered and Molecular Systems Vol. 2012, pp. 419-422.
[43] H. Bostanci, D. P. Rini, J. P. Kizito, V. Singh, S. Seal, and L. C. Chow, "High heat flux spray cooling with ammonia: Investigation of enhanced surfaces for CHF." International Journal of Heat and Mass Transfer, Vol. 55, 2012, pp. 3849-3856.
[44] S. Chunqiang, S. Shuangquan, T. Changqing, and X. Hongbo, "Development and experimental investigation of a novel spray cooling system integrated in refrigeration circuit." Applied Thermal Engineering, Vol. 33–34, 2012, pp. 246-252.
[45] Y. J. Gou, Z. L. Liu, C. M. Wang, and X. H. Zhong, "Experimental Study of Effect Factors on Performance of Heat Dissipation of HP Heat Exchanger for LED Cooling System." Advanced Materials Research, Vol. 490, 2012, pp. 2530-2533.
[46] L. Wu, X. Y. Xiong, and D. X. Wang, "Efficient Heat Dissipation Design of High-Power Multi-Chip Cob Package Led Modules." Advanced Materials Research, Vol. 463, 2012, pp. 1332-1340.
[47] B. H. Yang, H. Wang, X. Zhu, Q. Liao, Y. D. Ding, and R. Chen, "Heat transfer enhancement of spray cooling with ammonia by microcavity surfaces." Applied Thermal Engineering, Vol. 50, 2013, pp. 245-250.
[48] J. Palacios, J. Hernández, P. Gómez, C. Zanzi, and J. López, "Experimental study of splashing patterns and the splashing/deposition threshold in drop impacts onto dry smooth solid surfaces." Experimental Thermal and Fluid Science, Vol. 44, 2013, pp. 571-582.
[49] K. A. Ramisetty, A. B. Pandit, and P. R. Gogate, "Investigations into ultrasound induced atomization." Ultrasonics Sonochemistry, Vol. 20, 2013, pp. 254-264.
[50] J. Li, F. Lin, D. Wang, and W. Tian, "A loop-heat-pipe heat sink with parallel condensers for high-power integrated LED chips." Applied Thermal Engineering, Vol. 56, 2013, pp. 18-26.
[51] I. Y. Chen, M. Z. Guo, K. S. Yang, and C. C. Wang, "Enhanced cooling for LED lighting using ionic wind." International Journal of Heat and Mass Transfer, Vol. 57, 2013, pp. 285-291.
[52] S.-S. Hsieh, Y.-F. Hsu, and M.-L. Wang, "A microspray-based cooling system for high powered LEDs." Energy Conversion and Management, Vol. 78, 2014, pp. 338-346.
[53] S. Somasundaram and A. A. O. Tay, "A study of intermittent liquid nitrogen sprays." Applied Thermal Engineering, Vol. 69, 2014, pp. 199-207.
[54] S. J. Thiagarajan, S. Narumanchi, and R. Yang, "Effect of flow rate and subcooling on spray heat transfer on microporous copper surfaces." International Journal of Heat and Mass Transfer, Vol. 69, 2014, pp. 493-505.
[55] C. M. Kim and Y. T. Kang, "Cooling performance enhancement of LED (Light Emitting Diode) using nano-pastes for energy conversion application." Energy, Vol. 76, 2014, pp. 468-476.
[56] J. C. Wang, "Thermal module design and analysis of a 230 W LED illumination lamp under three incline angles." Microelectronics Journal, Vol. 45, 2014, pp. 416-423.
[57] Y. Tang, X. Ding, B. Yu, Z. Li, and B. Liu, "A high power LED device with chips directly mounted on heat pipes." Applied Thermal Engineering, Vol. 66, 2014, pp. 632-639.
[58] Q. Li, P. Tie, and Y. Xuan, "Investigation on heat transfer characteristics of R134a spray cooling." Experimental Thermal and Fluid Science, Vol. 60, 2015, pp. 182-187.
[59] H. Chen, W.-l. Cheng, Y.-h. Peng, W.-w. Zhang, and L.-j. Jiang, "Experimental study on optimal spray parameters of piezoelectric atomizer based spray cooling." International Journal of Heat and Mass Transfer, Vol. 103, 2016, pp. 57-65.
[60] Z.-F. Zhou, R. Wang, B. Chen, T. Yang, and G.-X. Wang, "Heat transfer characteristics during pulsed spray cooling with R404A at different spray distances and back pressures." Applied Thermal Engineering, Vol. 102, 2016, pp. 813-821.
[61] H. Bostanci, B. He, and L. C. Chow, "Spray cooling with ammonium hydroxide." International Journal of Heat and Mass Transfer, Vol. 107, 2017, pp. 45-52.
[62] M. C. J. Coolen, R. N. Kieft, C. C. M. Rindt, and A. A. van Steenhoven, "Application of 2-D LIF temperature measurements in water using a Nd : YAG laser." Experiments in Fluids, Vol. 27, 1999, pp. 420-426.
[63] D. Ross, M. Gaitan, and L. E. Locascio, "Temperature Measurement in Microfluidic Systems Using a Temperature-Dependent Fluorescent Dye." Analytical Chemistry, Vol. 73, 2001, pp. 4117-4123.
[64] Bauckhage, Klaus, "Science and Engineering of Droplets". William Andrew Publishing. 1999.
[65] J. R. Taylor, "An Introduction to Error Analysis: the study of uncertainties in physical measurements" 2nd ed. University Science Book. 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code