Responsive image
博碩士論文 etd-0712100-200228 詳細資訊
Title page for etd-0712100-200228
論文名稱
Title
固態反應法合成鋰離子二次電池應用之鋰錳尖晶石材料
Synthesis of Lithium Mangnate Spinel for Lithium Battery by Solid State Reaction
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
72
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2000-06-19
繳交日期
Date of Submission
2000-07-12
關鍵字
Keywords
鋰錳尖晶石、鋰離子二次電池
Lithium Battery, Lithium Magnate Spinel
統計
Statistics
本論文已被瀏覽 5650 次,被下載 3089
The thesis/dissertation has been browsed 5650 times, has been downloaded 3089 times.
中文摘要
LiMn2O4尖晶石因為內部的空缺結構可以容納鋰離子的進出而可以成為鋰二次電池陰極材料,且因其與現有鋰鈷、鋰鎳系統較低價位與高安全性的優勢使其極具未來的發展性,但要發展鋰錳尖晶石成為電池陰極材料,亦有較低電容量及低生命週期的缺點需克服,了解尖晶石材料在充放電過程中的結構與相變化為改善材料性質的重點。
利用熱擴散的原理可以使鋰離子進入尖晶石的內部空缺,與充放電情形相似,所以用690℃的溫度,使Li2CO3分解出鋰離子,並擴散進入LiMn2O4內,以X-ray對熱處理後的LiMn2O4尖晶石進行檢測,發現當鋰離子進佔鋰錳尖晶石內部的空缺位置時,尖晶石的晶格大小會產生膨脹,而膨脹極限為原晶格常數的12%。
在450℃ ~ 600℃的溫度範圍內使Li2CO3與LiMn2O4一起進行熱處理,以X-ray檢測發現Li2CO3與LiMn2O4在溫度到達500℃時先發生 Li2CO3 + LiMn2O4 + O2 → 2Li2MnO3 + CO2 ↑的化學反應,到570℃以後則再發生Li+ + LiMn2O4 → Li1+xMn2O4的塞入反應。
以穿透式電子顯微鏡觀察LiMn2O4尖晶石的晶粒,發現晶粒的形狀以{111}的面最容易出現,使得晶粒呈八面體及四面體形。
Abstract
none
目次 Table of Contents
1. 簡介(Introduction)----------------------------------------------------------------------- 1
2. 文獻回顧(Literature Review)---------------------------------------------------------- 2
2.1. 鋰離子二次電池的陰極材料----------------------------------------------------2
2.2. LiMn2O4的相變化及其對充放電過程的影響------------------------------ 10
2.3. LiMn2O4在280K溫度下的Jahn-Teller結構相變化---------------------- 12
2.4. 尖晶石晶粒形狀及γ- plot ----------------------------------------------------17

3. 實驗步驟(Experimental Procedure)------------------------------------------------- 22
3.1. 實驗藥品(Experimental chemicals)------------------------------------------- 22
3.2. 實驗樣本製作(Preparation of samples)-------------------------------------- 22
3.2.1. LiMn2O4 粉晶製作---------------------------------------------------------- 22
3.2.2. LiMn2O4 燒結塊製備------------------------------------------------------- 22
3.2.3. Li2CO3 燒結塊製備--------------------------------------------------------- 23
3.2.4. 熱處理試片製備------------------------------------------------------------- 23
3.2.5. 電解試片製備---------------------------------------------------------------- 23
3.2.6. 充放電試片製備------------------------------------------------------------- 24
3.2.7. LiMn2O4粉末TEM及800℃/12h退火後的LiMn2O4粉末
TEM試片製作--------------------------------------------------------------- 24
3.3. X-ray 繞射(X-ray diffractometry)--------------------------------------------- 25
3.4. TEM 分析------------------------------------------------------------------------ 25

4. 實驗結果(Results)--------------------------------------------------------------------- 26
4.1. X-ray 繞射分析結果(XRD)--------------------------------------------------- 26
4.1.1. LiMn2O4粉體製備----------------------------------------------------------- 26
4.1.2. LiMn2O4 燒結塊試片之X-ray 分析(Ⅰ)-------------------------------- 26
4.1.3. LiMn2O4 燒結塊試片之X-ray 分析(Ⅱ)-------------------------------- 28
4.1.4. LiMn2O4 燒結塊試片之X-ray 分析(Ⅲ)-------------------------------- 30
4.1.5. LiMn2O4 燒結塊試片之X-ray 分析(Ⅳ)-------------------------------- 32
4.1.6. LiMn2O4 燒結塊/Li2CO3 燒結塊電解反應分析----------------------- 34
4.1.7. LiMn2O4 燒結塊/ LiMn2O4 燒結塊電解反應分析-------------------- 35
4.1.8. Li/LiMn2O4 燒結塊充電反應分析---------------------------------------- 36
4.1.9. Li/LiMn2O4 燒結塊逆充電反應分析------------------------------------- 38
4.2. 透射式電子顯微鏡分析(TEM) ---------------------------------------------- 40
4.2.1. LiMn2O4 尖晶石粉晶TEM分析------------------------------------------ 40

4.2.2. 800℃/退火12h的LiMn2O4 尖晶石粉晶TEM分析------------------- 44

5. 結果討論(Discussion of results)----------------------------------------------------- 49
5.1. LiMn2O4 粉體及燒結塊---------------------------------------------------------- 49
5.2. 過量鋰離子對LiMn2O4 燒結塊的影響-------------------------------------- 50
5.3. 常溫電解對LiMn2O4 燒結塊的影響----------------------------------------- 53
5.4. 充電及逆充電反應對LiMn2O4 燒結塊的影響----------------------------- 54
5.5. 尖晶石γ- plot 及晶粉外型---------------------------------------------------- 56

6. 結論(Conclusions)-------------------------------------------------------------------- 63

未來進行方向------------------------------------------------------------------------------ 64

參考資料(References)--------------------------------------------------------------------- 65

附錄 (Appendix)-------------------------------------------------------------------------- 68
參考文獻 References

[1] 陳金銘, "高性能鋰離子電池材料發展趨勢", 工業材料, 157,132
(2000).
[2] 費定國, 劉致銘, "鋰離子電池未來商用陰極材料--鋰錳氧化物"
, 工業材料, 148, 155-62 (1999).
[3] W. A. Deer, R. A. Howie, J. Zussman, "An introduction to The Rock-
Forming Minerals", Addison-Wesley Pub Co , USA, pp.558-68 (1992).
[4] V. S. Pervov, I. A. Kedrinskii and E. V. Makhonina, "Cathode Materials for
Rechargeable Lithium Batteries", Inorganic Materials, 33[9], 869-77 (1997).
[5] M. M. Thackeray, "Spinel Electrodes for Lithium Batteriers", J. Am.
Ceram. Soc., 82[12], 3347-54 (1999).
[6] 梁繼文, "礦物學(下)", 五南出版社, 台灣, pp.859 (1984).
[7] J. M. Tarascon, E. Wang and F. K. Shokoohi, "The Spinel Phase of LiMn2O4
as a Cathode in Secondary Lithium Cells", J. Electrochem. Soc. 138, 2859-
64 (1991).
[8] Reimers, J.N., Fuller, E. W., Rossen, E., Dahn,and J.R., "Synthesis and
Electrochemical Studies of LiMnO2 Prepared at Low Tempertures", J.
Electrochem. Soc., 140[12], 3396-401 (1993).
[9] Jang, D. H., Shin, Y. J., Oh and S. M., "Dissolution of Spinel Oxides
and Capacity Losses in 4V Li/LixMn2O4 Cells", J. Electrochem. Soc.,
143[7], 2204-11 (1996).
[10] V. Massarotti, D. Capsoni, M. Bini and G. Chiodelli, "Electric and
Magnetic Properties of LiMn2O4- and Li2MnO3- Type Oxides", J. Solid
State Chem., 131, 94-100 (1997).
[11] A. Yamada and M. Tanaka,"JAHN-TELLER STRUCTURAL PHASE
TRANSITION AROUND 280K IN LiMn2O4", Mater. Res. Bull., 30, 715-
21 (1995).
[12] Y. Shimakawa, T. Numata and J. Tabuchi, "Verwey-type Transition
and Magnetic Properties of the LiMn2O4 Spinels", J. Solid State Chem.,
131, 138-43 (1997).
[13] J. L. Hutchison and N. A. Briscoe, "SURFACE PROFILE IMAGE OF
SPINEL CATALYST PARTICLES" , Ultramicroscopy, 18, 435-38
(1985).
[14] J. H. Choi and D. Y. Kim, "Equilibrium Shape of Internal Cavities in
Sapphire", J. Am. Ceram. Soc., 80[1], 62-68 (1997).
[15] M. M. Thackeray, C. S. Johnson, A. J. Kahaian, K. D. Kepler, J. T.
Vaughey, Y. Shao-Horn, S. and Hackney, "Stabilization of insertion
electrodes for lithium batteries", J. of Power Sources, 81-82, 60-66 (1999).
[16] 楊長榮, "高分子鋰二次電池之電化學分析", 工業材料, 156, 113-117
(1999).
[17] F. D. Bloss, "CRYSTALLOGRAPHY AND CRYSTAL CHEMISTRY",
chapter 5, Holt, Rinehart and Winston, Inc., USA, (1971).
[18] B. D. CULLITY, "ELEMENTS OF X-RAY DIFFRACTION", chapter 10,
Addison-Wesley publishing company, Inc., USA, (1978).
[19] Igor Levin and DAVID Brandon, "Metastable Alumina Polymorphs:
Crystal Structures and Transition Sequences", J. Am. Ceram. Soc., 81,
1995-2012 (1998).
[20] J. J. Couderc, S. Fritsch, M. Brieu, G. Vanderschaeve, M. Fagot and A.
Rousset, "A transmission electron microscopy study of lattice defects in
Mn3O4 hausmannite", Philosoph. Mag. B, 70, 1077-94 (1994).
[21] M. Y. Saidi, J. Barker. and R. Koksbang, "Thermodynamic and Kinetic
Investigation of Lithium Insertion in the Li1-xMn2O4 Spinel Phase", J. Solid
State Chem., 122, 195-99 (1996).
[22] A. H. Heuer and T. E. Mitchell, "Further discussion on the space group of
spinel", J. Phys. C:Solid State Phys., 8, 541-43 (1975).
[23] Myoung Youp Song, Dong Su Ahn, Hye Ryoung Park, "Capacity fading of
spinel phase LiMn2O4 with cycling", J. Power Sources, 83, 57-60 (1999).
[24] N. Treuil, C. Labrugere, M. Menetrier, J. Portier, G. Campet, A. Deshayes,
J. Frison, S. Hwang, S. Song and J. Choy, "Relationship between Chemical
Bonding Nature and Electrochemical Property of LiMn2O4 Spinel
Oxideswith Various Particle Sizes: Electrochemical Grafting Concept",J.
Phys. Chem. B, 1999[103], 2100-06 (1999).
[25] R. Darling and J. Newman, "Modeling Side Reactions in Composite
LiyMn2O4 Electrodes", J. Electrochem. Soc., 145[3], 990-98 (1998).
[26] R. Kanno, A. Kondo, M. Yonemura, R. Gover, Y. Kawamoto, M. Tabuchi,
T. Kamiyama, F. Izumi, C. Masquelier, G. Rousse, "The relationships
between phases ans structures of lithium manganese spinels", J. Power
Sources, 81-82, 542-46 (1999).
[27] S. Mukerjee, T. R. Thurston, N. M. Jisrawi, X. Q. Yang and J. McBreen,
"Structural Evolution of LixMn2O4 in Lithium- Ion battery Cells Measured
In Situ Using Synchrotron X-ray Diffraction Techniques", J. Electrochem.
Soc., 145[2], 466-71 (1998).
[28] S. Megahed. and B. Scrosati, "Rechargeable Nonaquous Batteries - The
role of lithium systems", The Electrochem. Soc. Int., 34-37 (1995).



[29] T. Takada, H. Hayakawa, H. Enoki, E. Akiba, H. Slegr, I. Davidson, J.
Murray, "Structure and electrochemical characterization of Li1+xMn2-xO4
spinels for rechargeable lithium batteries", J. Power Sources, 81-82, 505-
09 (1999).
[30] Y. Shiraishi, I. Nakai, T. Tsubata, T. Himda and F. Nishikawa, "In situ
Transmission X-ray Absorption Fine Structure Analysis of the Charge-
discharge Process in LiMn2O4, a Rechargeable Lithium Battery Material",
J. Solid State Chem., 133, 587-90 (1997).
[31] Y. Chida, H. Wada and K. Shizuka, "Relationship between cycle life of
Li(Mn2-xLix)O4-δ and oxygen deficiency δ", J. Power Sources, 81-82,
454-57 (1999).
[32] 楊模樺, "嵌入式過渡金屬氧化物在鋰電池電極材料上的應用",
工業材料, 157,144-51 (2000).

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code