Responsive image
博碩士論文 etd-0712102-180551 詳細資訊
Title page for etd-0712102-180551
論文名稱
Title
利用砂箱實驗探討電動力-Fenton法處理受酚污染土壤
Treatment of Phenol-Contaminated Soils by Combined Electrokinetic-Fenton Process
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
178
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-28
繳交日期
Date of Submission
2002-07-12
關鍵字
Keywords
Fenton法、土壤污染、整治、電動力、酚、電極極性轉換
Soil Contamination, Electrode Polarity Reverse, Phenol, Fenton Process, Electrokinetic Process, Remediation
統計
Statistics
本論文已被瀏覽 5712 次,被下載 2277
The thesis/dissertation has been browsed 5712 times, has been downloaded 2277 times.
中文摘要
本研究係利用尺寸為60 cm×30 cm×30 cm(長×寬×高)之砂箱實驗模擬電動力現地處理受酚污染之土壤。土體分為飽和層及未飽和層,進行20天之電動力實驗,藉由不同電場條件、轉換電極極性、電極槽添加Fenton試劑等操作條件,探討在電動力過程中及處理後土體相關參數、電場及污染物殘留等的分布情形。研究結果發現,在不進行電極極性轉換的電動力實驗組中,其陽極槽液pH值在施加電場2 ~3天後即降至2左右,陰極則上升至12左右,此現象持續至實驗終了;於轉換電極極性的實驗中,陽、陰極槽液的pH值變化則較不明顯(陽極槽液pH 4、陰極槽液pH 11)。
由陰、陽電極兩端間之土體孔隙水pH值變化得知,不論於定電壓或定電流系統中,電動力反應進行過程陰、陽極端產生之鹼、酸鋒會隨時間增加而各自往土體另一端方向移動,且初期鹼鋒移動速度較快而酸鋒移動速度較慢,惟實驗結束後,不論飽和層或未飽和層,其中段土體仍呈中性,並未受到酸、鹼鋒明顯的影響。
於定電壓(50 V)、不進行電極極性轉換的操作條件下,電動力或電動力-Fenton的實驗進行過程中,土體相對於陰極之電壓差變化於反應初期約呈線性關係,而後隨處理時間增加而呈非線性關係;而在電極極性轉換的實驗中,由於在酸、鹼鋒形成電阻極化之前便進行電極極性轉換,因此,並無明顯的電壓差變化。
於定電壓或定電流系統之電動力處理過程中,未飽和層土壤之含水率雖受到毛細現象影響而升高,但由於其土體並未直接與電極槽液接觸,電動力工法之電滲透效應對未飽和層的土壤含水率影響相對較小,導致反應後未飽和層之含水率反而較反應前為高,由25.34%上升至30%左右。在電滲透流率大小方面,由於轉換電極極性的實驗中,在兩電極槽皆可收集排出液的情況下導致其電滲透流量最大,於定電壓及定電流操作下,其電滲透係數分別為6.42×10-6 cm2/V•s及9.47×10-6 cm2/V•s。其次為沒有添加酚於土壤中之實驗組,其電滲透係數為3.27×10-6 cm2/V•s,由此可知,污染物的存在的確會阻礙電滲透流的傳輸。至於添加Fenton試劑之電動力實驗組的電滲透係數則較未添加Fenton試劑之實驗組為大,定電壓下其電滲透係數分別為1.59×10-6 cm2/V•s及9.45×10-7 cm2/V•s,定電流下則分別為2.31×10-6 cm2/V•s及9.50×10-7 cm2/V•s。在處理效率方面,不論於定電壓或定電流系統中皆以電動力-Fenton法實驗組最佳,酚的總破壞去除率分別為78.06%及80.11%,其次為不添加Fenton試劑之電動力實驗組,總破壞去除率分別為69.92%及71.38%,而電極極性轉換實驗組之總破壞去除率則較不理想,僅62.34%~64.30%。造成轉換電極極性的實驗組效果不佳之原因,可能係由於電動力對於酚之破壞效應小於酚受電滲透移除效應影響之故,酚在未移出土體之前即由於轉換電極極性而導致停滯於土體中,此結果可由轉換電極極性的實驗組實驗後土體中段土壤中酚殘餘量高於其他段土體而知。

Abstract
The purpose of this study was to evaluate the treatment efficiency of phenol contaminated soils by electrokinetic (EK) process conducted in sand boxes (60 cm×30 cm×30 cm; L×W×H). The electric field strength, electrode polarity reverse, and Fenton reagent were employed as the experimental factors in this study to assess the variations of soil characteristics, potential difference, and residual phenol concentration distribution during a treatment period of 20 days and after the treatment. It was found that the anode reservoir pH decreased to around 2 and the cathode reservoir pH increased to approximately 12 after 2~3 days of treatment in the no electrode polarity reverse system. However, the variation of pH in the anode and cathode reservoirs was less obvious in the case with electrode polarity reverse.
No matter a constant potential system or a constant current system was employed, a general trend of a lower pH at the anode reservoir and a higher pH at the cathode reservoir would be found. The acid front generated at the anode reservoir flushed across the soil specimen toward the cathode and the base front advanced toward the anode. However, in the central region of sand box, unsaturated and saturated soil specimen maintain neutral.
For EK or EK-Fenton experiments, under the constant potential conditions, the potential difference relative to the cathode versus the distance from anode was found to have a linear relationship at the beginning of the electrical potential application. As the treatment time elapsed, the potential gradient became non-linear. Nevertheless, there was no remarked potential gradient change in the case with electrode polarity reverse.
Although capillarity has resulted in an increase of the moisture content of unsaturated soil (from 25.34% to 30% after 20 days), electroosmotic (EO) flow was not obvious in the unsaturated zone.
For the experiments with electrode polarity reverse, they had a much greater EO flow quantity, the electroosmotic permeability coefficients for constant potential and constant current systems were 6.42×10-6 cm2/V•s and 9.47×10-6 cm2/V•s, respectively. It was also found that the existence of contaminants did reduce the EO flow quantity.
Regardless of the employment of a constant potential or constant current system, the maximum destruction and removal efficiency (DRE) of phenol was obtained for EK-Fenton process. The maximum DRE values of phenol for both constant potential and constant current systems were found to be 78.06% and 80.11%, respectively. However, the DRE of phenol was found to be much lower for the system with electrode polarity reverse. It was postulated that the destruction efficiency of phenol was less obvious than the removal efficiency in the electrode polarity reverse system. In addition, a frequent reverse of electrode polarity also resulted in a frequent change of EO flow direction. Thus, a flow hysteresis of phenol in the soil compartment was found.

目次 Table of Contents
目 錄
頁次
謝誌 i
摘要 ii
Abstract iv
目錄 vi
表目錄 ix
圖目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 5
1.3 研究內容 5
第二章 基本理論與文獻回顧 6
2.1 酚之基本性質及危害性 6
2.2 酚於土壤中之傳輸機制與吸附特性 10
2.3 電動力法之相關理論 11
2.3.1 電動力法傳輸及反應機制 11
2.3.2 電動力法之極化現象 13
2.3.3 電動力法之影響因子 14
2.3.4 電動力法的優點 16
2.4 電動力法處理污染物之相關研究 18
2.4.1 電動力法處理有機污染物之相關研究及案例 18
2.4.2 電動力法二維模場之相關研究 19
2.4.3 電動力法結合其它方法之相關研究 20
2.5 Fenton法之反應機制 22
第三章 實驗材料、方法與架構 32
3.1 實驗材料 32
3.1.1 土樣來源與前處理 32
3.1.2 試藥及材料 32
3.2 實驗設備 36
3.2.1 電動力法處理系統 36
3.2.2 其它儀器設備 38
3.3 研究架構 40
3.4 土壤樣品基本性質分析 44
3.4.1 pH值 44
3.4.2 含水份 44
3.4.3 比重 45
3.4.4 有機物含量 47
3.4.5 灼燒減量 47
3.4.6 陽離子交換容量 47
3.4.7 粒徑分析 48
3.5 人工污染土配製及砂箱裝填 50
3.5.1 人工污染土配製程序 50
3.5.2 污染土砂箱裝填程序 50
3.6 電動力反應前後及過程分析 51
3.6.1 電動力處理前後分析 51
3.6.2 電動力處理過程監測分析 52
第四章 結果與討論 54
4.1 土壤樣品基本性質分析 54
4.1.1 pH值 54
4.1.2 含水份 54
4.1.3 比重 54
4.1.4 有機物含量 54
4.1.5 灼燒減量 54
4.1.6 陽離子交換容量 54
4.1.7 粒徑分佈 55
4.1.8 比表面積 56
4.2 定電壓-電動力法處理受酚污染之土壤 57
4.2.1 電動力處理過程分析 57
4.2.2 電動力處理後分析 67
4.3 定電壓-電動力-Fenton法處理受酚污染之土壤 73
4.3.1 電動力處理過程分析 73
4.3.2 電動力處理後分析 83
4.4 定電壓-電動力法-電極極性轉換處理受酚污染土壤 89
4.4.1 電動力處理過程分析 89
4.4.2 電動力處理後分析 98
4.5 定電流-電動力法處理受酚污染土壤 104
4.5.1 電動力處理過程分析 104
4.5.2 電動力處理後分析 111
4.6 定電流-電動力-Fenton法處理受酚污染之土壤 117
4.6.1 電動力處理過程分析 117
4.6.2 電動力處理後分析 123
4.7 定電流-電動力法-電極極性轉換處理受酚污染土壤 129
4.7.1 電動力處理過程分析 129
4.7.2 電動力處理後分析 135
4.8 綜合討論 141
4.8.1 電極質量變化 141
4.8.2 電滲透流探討 143
4.8.3 處理效率探討 145
4.8.4 經濟效益評估 147
第五章 結論與建議 150
5.1 結論 150
5.2 建議 153
參考文獻 154
附錄 實驗數據 167
參考文獻 References
1. 鍾麗華,「九處甲級有害場址,尚未清理完成」,自由時報,7版,台北,2001年11月21日。
2. U.S. EPA, “Remediation Technologies Screening Matrix and Reference Guide”, http://www.frtr.gov/matrix2/section3/table3_ 2.html, 2002.
3. 袁菁、翁誌煌,“電動力復育技術之介紹”,環保訓練園地,第58期,桃園,2002。
4. 葉國樑,「原油污染土壤去除方式之研究」,國立中央大學土木工程研究所博士論文,1999。
5. 環保署毒理資料庫,編號:HSN-113,http://ww2.epa.gov.tw/toxic/prog/database/7328.htm。
6. 工業技術研究院,物質安全資料表,序號:98。
7. 胡漢生,「環境醫學」,科技圖書股份有限公司,台北,1989。
8. 行政院環保署,「土壤污染管制標準」,2001。
9. 行政院環保署,「土壤污染監測基準」,2001。
10. U.S. EPA, “NPL Site Listing Process”, http://www.epa.gov/ superfund/action/law/npl_hrs.htm, 2002.
11. 行政院環保署,「地下水污染管制標準」,2001。
12. 吳敏煌、顏秀美、鄭顯榮、宋浚泙、黃世昌,“地下水管制標準及監測基準之研訂”,第七屆土壤污染整治研討會論文集,第75~103頁,台北,2001。
13. Banat, F. A., B. Al-Bashir, S. Al-Asheh, and O. Hayajneh, “Adsorption of Phenol by Bentonite”, Environmental Pollution, Vol. 107, No. 3, pp. 391~398, 2000.
14. Viraraghavan, T. and F. D. Alfaro, “Adsorption of Phenol from Wastewater by Peat, Fly Ash and Bentonite”, Journal of Hazardous Materials, Vol. 57, No. 1, pp. 59~70, 1998.
15. 林財富、楊裕堅,“酚在土壤顆粒中之平衡與傳輸”,第十二屆廢棄物技術處理研討會論文集,第313-320頁,台中,1997。
16. Acar, Y. B., H. Lee, and R. J. Gale, “Phenol Removal from Kaolinite by Electrokinetics”, Journal of Geotechnical Engineering, Vol. 118, pp. 1837~1852, 1992.
17. Casagrande, I. L., “Review of Past and Current Work on Electroosmotic Stabilization of Soils”, Harvard Soil Mechanics Series 45, Harvard, Cambridge, 1957.
18. Casagrande, L., “Electro-osmosis in Soils”, Geotechnique, Vol. 1, No. 1, pp.1959~1977, 1949.
19. Banerjee, S., J. J. Horng, and J. F. Ferguson, “Field Experience with Electrokinetics at a Superfund Site”, Transportation Research Record 1312, pp. 167~174, 1991.
20. Bruell, C. J., B. A. Segall, and M. T. Walsh, “Electro-osmotic Removal of Gasoline Hydrocarbons and TCE from Clay”, Journal of Environmental Engineering, Vol. 118, No. 1, pp. 68~83, 1992.
21. Virkutyte, J., M. Sillanpää, and P. Latostenmaa, “Electrokinetic Soil Remediation-Critical Overview”, The Science of the Total Environment, Vol. 289, No. 1, pp. 97~121, 2002.
22. Shapiro, A. P. and R. E. Probstein, “Removal of Contaminants from Saturated Clay by Electroosmosis”, Environmental Science and Technology, Vol. 27, No. 2, pp. 283~291, 1993.
23. Ho, V. S., W. Sheridan, C. J. Athmer, M. A. Heitkamp, J. M. Brackin, D. Weber, and P. H. Brodsky, “Integrated In Situ Soil Remediation Technology: the LasagnaTM Process”, Environmental Science and Technology, Vol. 29, No. 10, pp. 2528~2534, 1995.
24. Yu, J. W. and I. Neretnieks, “Theoretical Evaluation of a Technique for Electrokinetic Decontamination of Soils”, Journal of Contaminant Hydrology, No. 4, Vol. 26, pp. 291~299, 1997.
25. Higgins, T. E., A. R. Halloran, and J. C. Petura, “Traditional and Innovative Treatment Methods for Cr(VI) in Soil”, Journal of Soil Contamination, No. 6, Vol. 6, pp. 767~797, 1996.
26. Vane, M. L. and G. M. Zang, “Effect of Aqueous Phase Properties on Clay Particle Zeta Potential and Electro-osmotic Permeability: Implications for Electro-kinetic Soil Remediation Processes”, Journal of Hazardous Materials, Vol. 55, No. 3, pp. 1~22, 1997.
27. Acar, Y. B., R. J. Gale, A. N. Alshawabkeh, R. E. Marks, S. Puppala, M. Bicka, and R. Parker, “Electrokinetic Remediation: Basics and Technology Status”, Journal of Hazardous Materials, Vol. 40, No. 2, pp. 117~137, 1995.
28. Leinz, R. W., D. B. Hoover, and A. L. Meier, “NEOCHIM: An Electrochemical Method for Environmental Application”, Journal of Geochemical Exploration, Vol. 64, No. 3, pp.421~434, 1998.
29. Brain, E. R., M. T. Berg, J. C. Thompson, and J. H. Hatfiefld, “Chemical Conditioning of Electrode Reservoirs During Electrokinetic Soil Flushing of Pb-Contaminated Silt Loam”, Journal of Environmental Engineering, Vol. 121, No. 11, pp. 805~815, 1995.
30. Acar, Y. B. and A. N. Alshawabkeh, “Principals of Electrokinetic Remediation”, Environmental Science and Technology, Vol. 27, No. 4, pp. 2638~2647, 1993.
31. Hamed, J. T., Y. B. Acar, and R. J. Gale, “Pb(Ⅱ) Removal from Kaolinite Using Electrokinetics”, Journal of Geotechnical Engineering, ASCE, Vol. 122, No. 3, pp. 241~271, 1991.
32. Alshawabkeh, A. N. and Y. B. Acar, “Removal of Contaminants from Soils by Electrokinetics: A Theoretical Treaties”, Journal of Environmental Science and Health, Part (A), Vol. 27, No. 7, pp.1835~1861, 1992.
33. Larry, C. M. and J. L. Chen, “Effects of Conductive Fractures During In-Situ Electroosmosis”, Journal of Hazardous Materials, Vol. 55, No. 3, pp. 239~262, 1997.
34. Dale, S. S., “Electroosmosis Technology for Soil Remediation: Laboratory Results, Field Trial, and Economic Modeling”, Journal of Hazardous Materials, Vol. 55, No. 1, pp. 81~91, 1997.
35. 紀吉鴻,「電動法結合徑向電場及抽取系統處理重金屬污染土壤之實驗室研究」,國立雲林科技大學環境與安全工程技術研究所碩士論文,1999。
36. Hamed, J. T. and A. Bhadra, “Influence of Current Density and pH on Electrokinetics”, Journal of Hazardous Materials, Vol. 55, No. 3, pp. 279~294, 1997.
37. Lee, H. H. and J. W. Yang, “A New Method to Control Electrolytes pH by Circulation System in Electrokinetic Soil Remediation”, Journal of Hazardous Materials, Vol. 77, No. 3, pp. 227~240, 2000.
38. Röhrs, J., G. Ludwig, and D. Rahner, “Electrochemically Induced Reactions in Soils—A New Approach to the In-Situ Remediation of Contaminated Soils: Part 2: Remediation Experiments with a Natural Soil Containing Highly Chlorinated Hydrocarbons”, Electrochimica Acta, Vol. 47, No. 9, pp. 1405~1414. 2002.
39. Baraud, F., S. Tellier, and M. Astruc, “Temperature Effect on Ionic Transport During Soil Electrokinetic Treatment at Constant pH”, Journal of Hazardous Materials, Vol. 64, No. 3, pp. 263~281, 1999.
40. Krishna, R. R., U. S. Parupudi, S. N. Devulapalli, and Y. C. Xu, “Effects of Soil Composition on the Removal of Chromium by Electrokinetics”, Journal of Hazardous Materials, Vol. 55, No. 3, pp. 135~158, 1997.
41. Wada, S. I. and Y. Umegaki, “Major Ion and Electrical Potential Distribution in Soil Under Electrokinetic Remediation”, Environmental Science and Technology, Vol. 35, No. 11, pp. 2151~2155, 2001.
42. Larry, C. M. and J. L. Chen, “Effects of Conductive Fractures During In-Situ Electroosmosis”, Journal of Hazardous Materials, Vol. 55, No. 3, pp. 239~262, 1997.
43. Nyer, E. K., S. Fam, D. F. Kidd, P. L. Palmcr, G. Bocttcheer, T. L. Crossman, and S. S. Suthersan, “In-Situ Treatment”, CRC Press, Inc., Boca Raton, Florida, pp. 310~314, 1996.
44. Powell, R. M., D. W. Blowe, R. W. Fillham, D. Schultz, T. Divavec, R. W. Plus, J. L. Vogan, P. D. Powell, and R. Landis, Permeable Reactive Barrier Technologies for Contaminant Remediation, U.S. EPA EPA/600/R-98/125, 1998.
45. U.S. EPA, Superfund Innovative Technology Evaluation Program, Technology Profiles 10th Ed. EPA/540/R-99/500a, Vol. 1, pp. 194~195; 202~203; 224~225, 1999.
46. Probstein, R. F. and R. E. Hicks, “Removal of Contaminants from Soils by Electric Fields”, Science, Vol. 60, No. 23, pp. 498~503, 1993.
47. Hicks, R. E. and S. Tondorf, “Electrorestoration of Metal Contaminated Soils”, Environmental Science and Technology, Vol. 28, No. 4, pp. 2203~2210, 1994.
48. Acar, Y. B., J. T. Hamed, A. N. Alshawabkeh, and R. J. Gale, “Removal of Cadmium(II) from Saturated Kaolinite by the Application of Electrical Current”, Geotechnique, Vol. 44, No. 2, pp. 239~254, 1994.
49. Reddy, K. R., and U. S. Parupudi, “Removal of Chromium, Nickel and Cadmium from Clays from In-Situ Electrokinetic Remediation”, Journal of Soil Contamination, Vol. 6, No. 3, pp. 252~238, 1997.
50. Mohamed, A. M. O., “Remediation of Heavy Metal Contaminated Soils via Intergrated Electrochemical Processes”, Waste Management, Vol. 16, No. 8, pp. 741~747, 1996.
51. 洪肇嘉、吳惠銘、紀吉鴻、陳錕榮,“電動力復育鉻、鎘、鉛污染土壤之研究”,第十三屆廢棄物處理技術研討會論文集,第312~318頁,高雄,1998。
52. 楊金鐘、陳政德、洪志雄、洪源駿,“電動力-Fenton法處理4-氯酚污染土壤之成效與反應動力討論”,第十五屆廢棄物處理技術研討會論文集,第2-28~2-33頁,斗六,2000。
53 Takiyama, L. and C. P. Huang, “In-Situ Removal of Phenols from Contaminated Soil by Electro-osmosis Process”, Proceedings of 27th Mid-Atlantic Industrial & Hazardous Waste Conference, Lehigh University, Technomic Publishing Company, Lancaster, PA, pp. 835~846, 1995.
54. Yang, G. C. C. and Y. W. Long, “Removal and Degradation of Phenol in a Saturated Flow by In-Situ Electrokinetic Remediation and Fenton-Like Process”, Journal of Hazardous Materials, Vol. 69, No. 3, pp. 259~271, 1999.

55. 袁菁、陳威錦、江姿幸,“受苯系有機污染物土壤以電動力-界面活性劑系統處理之研究”,第十五屆廢棄物處理技術研討會論文集,第2-214~2-221頁,斗六,2000。
56. 袁菁、江姿幸、陳威錦、翁誌煌,“電動力法復育受苯系有機物污染土壤之研究”,第七屆土壤污染整治研討會論文集,第289~304頁,台北,2001。
57. Acar, Y. B., A. N. Alshawabkeh, and R. A. Parker, “Theoretical and Experimental Modeling of Multi-Species Transport in Soils Under Electric Fields”, U. S. EPA Project Summary, EPA/600/SR-97/054, 1997.
58. Bruel, C. J., B. A. Segall, and M. T. Walsh, “Electro-osmotic Removal of Gasoline Hydrocarbons and TCE from Clay”, Journal of Environmental Engineering, Vol. 118, No. 1, pp. 68~83, 1992.
59. Acar, Y. B., H. Li, and R. J. Gale, “Phenol Removal from Kaolinite by Electrokinetics”, Journal of Geotechnical Engineering, Vol. 118, No. 11, pp. 1837~1852, 1992.
60. Takiyama, L. and C. P. Huang, “In-Situ Removal of Phenols from Contaminated Soil by Electro-osmosis Process”, Proceedings of 27th Mid-Atlantic Industrial & Hazardous Waste Conference, Lehigh University, Technomic Publishing Company, Lancaster, PA, pp. 835~846, 1995.
61. Awad, M. Y. and N. S. Abuzaid, “The Influence of Residence Time on the Anodic Oxidation of Phenol”, Separation and Purification Technology, Vol. 18, No. 3, pp. 227~236, 2000.
62. Ho, V. S., “The LasagnaTM Technology for In Situ Soil Remediation: 1. Small Field Test”, Environmental Science and Technology, Vol. 33, No. 7, pp. 1086~1091, 1999.
63. 龍玉文,「電動力-Fenton法處理受酚與4-氯酚污染土壤之研究」,國立中山大學環境工程研究所碩士論文,1998。
64. 陳政德,「電動力-Fenton法結合生物分解現地處理受五氯酚污染土壤之研究」,國立中山大學環境工程研究所碩士論文,2000。
65. 翁誌煌、陳仁慶、林裕雄、周協裕,“電動力法處理酚類污染土壤之可行性研究”,第十三屆廢棄物處理技術研討會論文集,第197~204頁,高雄, 1998。
66. 翁誌煌、陳仁慶、涂宏旭、林裕雄、袁菁,“電動力復育受單氯酚污染黏質土壤之研究”,第十四屆廢棄物處理技術研討會論文集,第2-47~2-54頁,中壢,1999。
67. 葉國樑,「原油污染土壤去除方式之研究」,國立中央大學土木工程研究所博士論文,1999。
68. Yeh, K. L. and R. S. Wu, “Electro-Kinetic Removal of Oil from a Contaminated Soil”, Journal of the Chinese Institute of Engineers, Vol. 23, No. 1, pp. 61~69, 2000.
69. Jacobs, R. A. and R. F. Probstein, “Two-Dimensional Modeling of Electroremediation”, AIChE Journal, Vol. 42, No. 6, pp. 1685~1696, 1996.
70. Acar, Y. B., A. N. Alshawabkeh, and R. A. Parker, “Theoretical and Experimental Modeling of Multi-Species Transport in Soils Under Electric Fields”, U. S. EPA Project Summary, EPA/600/SR-97/054, 1997.
71. Kim, G., “Two-Dimensional Numerical Modeling of Electrokinetic Extraction of Contaminants from Fine-Grained Soils”, Ph.D. Dissertation, Texas A&M University, 1998.
72. U. S. EPA, “Electrokinetics at Site 5, Naval Air Weapons Station Point Mugu, California”, Cost and Performance Report, 2000.
73. 洪肇嘉、紀吉鴻,“重金屬處理污染土壤之二維尺度研究”,第十四屆廢棄物處理技術研討會論文集,第2-149~2-155頁,中壢,1999。
74. 薩支高、徐文逢,“環境變因對鎘污染土壤電動力法移除效率影響”,第十四屆廢棄物處理技術研討會論文集,第279~286頁,中壢,1999。
75. 薩支高、黃嘉貞,“以電動力復育受鎘污染土壤之模場2D試驗”,第十五屆廢棄物處理技術研討會論文集,第2-163~2-166頁,斗六, 2000。
76. Yang, G. C. C. and Y. W. Long, “Removal and Degradation of Phenol in a Saturated Flow by In-Situ Electrokinetic Remediation and Fenton-Like Process”, Journal of Hazardous Materials , Vol. 69, No. 3, pp. 259~271, 1999.
77. Yang, G. C. C. and C. Y. Liu, “Removal of TCE Contaminated Soils by in Situ EK-Fenton Process”, Journal of Hazardous Materials, Vol. 85, No. 3, pp. 317~331, 2001.
78. 楊金鐘,「土壤電動力復育技術操作條件研究」,工業技術研究院能源與資源研究所委託計畫期末報告,2001。
79. Kim, J. and K. Lee, “Effects of Electric Field Directions on Surfactant Enhanced Electrokinetic Remediation of Diesel-Contaminated Sand Column”, Journal of Environmental Science and Health, Vol. 34, No. 4, pp. 863~877, 1999.
80. 袁菁、陳威錦、江姿幸,“受苯系有機污染物土壤以電動力-界面活性劑系統處理之研究”,第十五屆廢棄物處理技術研討會論文集,第2-214~2-221頁,斗六,2000。
81. 袁菁、翁誌煌、陳威錦、江姿幸,“以複合界面活性劑操作流質提昇電動力技術處理四氯乙烯黏質土壤”,第十六屆廢棄物處理技術研討會論文集光碟,高雄,2001。
82. Li, B. A., K. A. Cheung, and K. R. Reddy, “Cosolvent-Enhanced Electrokinetic Remediation of Soils Contaminated with Phenanthrene”, Journal of Environmental Engineering, Vol. 126, No. 6, pp. 527~533, 2000.
83. Fenton, H. J. H., “Oxidation of Tartaric Acid in Presence of Iron”, Journal of Chemical Society, Vol. 65, pp. 889~910, 1894.
84. Kang, N., D. S. Lee, and J. Yoon, “Kinetic Modeling of Fenton Oxidation of Phenol and Monochlorophenols”, Chemosphere, Vol. 47, No. 9, pp. 915~924, 2002.
85. Muto. H., F. Shunzaburo, and S. Miyoshi, “Heterogeneous Wet-Decomponents in Ash Filtrate Sample by Fenton’s Regent, Titanium Dioxide and Granite Porphyry Powders”, Journal of Environmental Science and Health, Vol. A32, No. 2, pp. 517~525, 1997.
86. Tang, W. Z. and S. Tassos, “Oxidation Kinetics and Mechanisms of Trihalomethanes by Fenton’s Regent”, Water Research, Vol. 31, No. 5, pp. 1117~1125, 1997.
87. 程惠生、盧啟文、葉昭巖,“利用Fenton’s Regent處理受Fluoranthene污染土壤之研究”,第十屆廢棄物處理技術研討會論文集,第140~148頁,台南,1995。
88. Watts, R. J., K. F. Michael, S. H. Kong, and L. T. Amy, “A Foundation for the Risk-Based Treatment of Gasoline- Contaminated Soils Using Modified Fenton’s Reaction”, Journal of Hazardous Materials, Vol. 76, No. 2, pp. 73~89, 2000.
89. Sprah, G. and S. Harms, “Influence of Some Groundwater and Surface Waters Constituents on the Degradation of 4-Chlorophenol by the Fenton Reaction”, Chemosphere, Vol. 30, No. 1, pp. 9~20, 1995.
90. 吳鴻明,「似Fenton法現地氧化TCE DNAPL之探討」,國立屏東科技大學環境工程與科學系碩士論文,2000。
91. 傅啟峰,「電催化芬頓法處理皮革廢水」,國立台灣大學環境工程研究所碩士論文,2001。
92. 楊金鐘、龍玉文,“電動力-似Fenton法處理酚、四氯酚砂質壤土之研究”,第十三屆廢棄物處理技術研討會論文集,第189~196頁,高雄,1998。
93. 楊金鐘、龍玉文,“電動力-Fenton法處理受酚、4-氯酚污染土壤之研究”,第十三屆廢棄物處理技術研討會論文集,第284~291頁,高雄,1998。
94. 翁誌煌、陳仁慶、林裕雄、周協裕,“電動力法處理酚類污染土壤之可行性研究”,第十三屆廢棄物處理技術研討會論文集,高雄,第197~204頁,1998。
95. 楊金鐘、陳政德,“電動力-Fenton法結合生物分解現地處理受五氯酚污染土壤之研究”,第十五屆廢棄物處理技術研討會論文集,第2-21~2-28頁,斗六,2000。
96. 蔡在唐、簡全基、邱瑞彬、黃嘉貞、鄭云淳、薩支高,“利用電動法復育受五氯酚污染之土壤”,第十五屆廢棄物處理技術研討會論文集,第2-167~2-172頁,斗六,2000。
97. 楊金鐘、洪志雄、洪源駿,“電動力-Fenton法現地土壤復育應用評估”,第十六屆廢棄物處理技術研討會論文集光碟,高雄,2001。
98. 翁誌煌、涂宏旭、袁菁,“串聯式電動力法復育受三氯乙烯污染黏質土壤之研究”,第七屆土壤污染整治研討會論文集,第217~232頁,台北,2001。
99. 袁菁、江姿幸、陳威錦、翁誌煌,“電動力法復育受苯系有機物污染土壤之研究:土壤質地之影響”,第七屆土壤污染整治研討會論文集,第289~304頁,台北,2001。
100. 行政院環保署環境檢驗所,「土壤中酸鹼值測定方法」,NIEA S410.60T,1995。
101. 行政院環保署環境檢驗所,「土壤水份含量測定方法-重量法」,NIEA S280.60T,1995。
102. ASTM, “Standard Test Method for Specific Gravity of Soils”, ASTM D854-83, 1983.
103. Nelson, D. W. and L. E. Sommers, “Total Carbon and Organic Matter”, in Handbook of Soil Mechanics, Vol. 2, Soil Testing, Chapter 29, pp. 539~579, Elsevier Scientific Publishing Co., New York, 1980.
104. Head, K. H., “Manual of Soil Laboratory Testing, Volume 1: Soil Classification and Compaction Tests”, Pentech Press Limited, Plymouth, Devon, p. 249, 1980.
105. 行政院環保署環境檢驗所,「土壤中陽離子交換容量-醋酸鈉法」,NIEA S202.60A,1995。
106. Varian Chrompack Application Note, Application 197-GC, 2002.
107. Metcalf & Eddy, Inc., “Wastewater Engineering: Treatment, Disposal, and Reuse”, 3rd Ed., McGraw-Hill, Inc., New York, p. 1045, 1991.
108. 王明光,「土壤環境化學」,國立編譯館,台北,1997。
109. 楊金鐘、吳龍泉、吳春生、陳躍升,“土壤及地下水受有機物污染整治管理實例研究”,第十四屆環境管理及規劃研討會論文集光碟,高雄,2001。
110. 楊金鐘,「現地電動力整治地下水污染-實驗室試驗及模廠採樣、檢測」,森康顧問股份有限公司委託計畫期末報告,2001。
111. Yeo, Y. B., J. T. Hamed, A. N. Alsheabkeh, and R. J. Gale, “Removal of Cadmium(II) from Saturated Kaolinite by the Application of Electrical Current”, Geotechnique, Vol. 44, No. 2, pp. 239~254, 1994.
112. 台灣電力公司,“電費計收”,http://www.taipower.com.tw/b.htm,2002。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code