Responsive image
博碩士論文 etd-0712102-235230 詳細資訊
Title page for etd-0712102-235230
論文名稱
Title
氮化鋁薄膜在鈮酸鋰及ST切面石英基板上之表面聲波頻率溫度係數之研究
The study of temperature oefficient of SAW frequency for AlN thin films on LiNbO3 and ST-quartz
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
95
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-06-28
繳交日期
Date of Submission
2002-07-12
關鍵字
Keywords
氮化鋁、頻率溫度係數、ST切面石英基板、表面聲波、鈮酸鋰
St-quartz, SAW, LiNbO3, AlN, TCF
統計
Statistics
本論文已被瀏覽 5671 次,被下載 2557
The thesis/dissertation has been browsed 5671 times, has been downloaded 2557 times.
中文摘要
本論文使用反應性射頻磁控濺鍍法,利用濺鍍條件為濺鍍功率370W、腔室壓力15mTorr、氮氣濃度為40%及30%、基板溫度400℃,分別將高C軸排向的氮化鋁(AlN)薄膜沈積在Z軸切面LiNbO3基板及ST切面石英基板上。
本研究亦藉由XRD、SEM與AFM分析AlN薄膜以不同的厚度沈積在LiNbO3及ST切面石英基板上的結果,並討論其材料特性。
另外,在不同厚度的AlN薄膜上製作指叉換能器,以探討膜厚在雙壓電層結構對SAW元件之影嚮以及AlN薄膜本身的頻率溫度係數(Temperature coefficient of frequency, TCF)大小。由實驗結果得知,隨著AlN薄膜厚度的增加,表面聲波濾波器的中心頻率及TCF亦隨之增加;並且證實了AlN薄膜本身的TCF確為正值。


Abstract
In this study, we use the reactive rf magnetron sputtering method with deposition parameters of RF power of 370W, sputtering pressure of 15 mTorr, substrate temperature of 400℃, nitrogen concentration (N2/N2+Ar) of 30% and 40%, to deposit highly c-axis orientation AlN thin films on Z-cut LiNbO3 and ST-cut quartz piezoelectric substrate, respectively.
The material characteristics of AlN films deposited on Z-cut LiNbO3 and ST-cut quartz substrate with different thickness were obtained by means of the analyses of XRD, SEM and AFM. Besides, the interdigital transducers (IDTs) were fabricated on the bi-layers structure. The AlN film thickness of piezoelectric bi-layers structure was varied in order to discuss its effect on SAW devices and the temperature coefficient of frequency (TCF) of AlN. From the experimental results, it reveals that the center frequency and TCF of SAW filters increase with the increased AlN thin film thickness. Besides it can be concluded that poly-crystalline AlN exhibits a positive temperature coefficient of frequency (TCF).


目次 Table of Contents
目錄
摘要 I

目錄 III

圖表目錄 V

第一章 前言 1

第二章 理論 5
2.1 AlN結構與特性 5
2.2 LiNbO3結構與特性 6
2.3 反應性射頻磁控濺鍍原理 7
2.3.1 輝光放電 7
2.3.2 磁控濺鍍 8
2.3.3 射頻濺射 9
2.3.4 反應性濺射 9
2.4 SAW元件的理論與特性 10
2.4.1 SAW元件的特點 10
2.4.2 SAW元件的基本設計 11
2.5 SAW元件的參數性質 11
2.5.1 Vp測量 11
2.5.2 IL測量 12
2.5.3 K2測量 13
2.5.4 TCF測量 14

第三章 實驗 15
3.1 基板的清洗 15
3.2 濺鍍系統與薄膜沉積 16
3.3 X光繞射 (X-Ray Diffraction, XRD) 分析 17
3.4 掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)分析 18
3.5 原子力顯微鏡(Atomic Force Microscopy, AFM)分析 18
3.6 SAW元件的製作 19
3.7 光學顯微鏡分析 20
3.8 電路板製作 20
3.9 元件測量 21

第四章 結果與討論 22
4.1 XRD分析 22
4.1.1 AlN/LiNbO3結構的XRD分析 22
4.1.2 AlN/ST-quartz結構的XRD分析 22
4.2 SEM分析 23
4.2.1 AlN/LiNbO3結構的SEM分析 23
4.2.1 AlN/ST-quartz結構的SEM分析 23
4.3 原子力顯微鏡(AFM)分析 23
4.3.1 AlN/LiNbO3結構的AFM分析 24
4.3.2 AlN/ST-quartz結構的AFM分析 24
4.4 指叉換能器(IDTs)製作 24
4.5 SAW元件分析 25
4.5.1 Vp的量測 25
4.5.1.1 AlN/LiNbO3結構的Vp測量 25
4.5.1.2 AlN/ST-quartz結構的Vp測量 26
4.5.2 TCF的測量 26
4.5.2.1AlN/ST-quartz結構的TCF測量 27
4.5.2.2 AlN/LiNbO3結構的TCF測量 27

第五章 結論 29

參考文獻 31






圖 表 目 錄
圖1-1 SAW元件的基本結構:(a)塊體元件,(b)薄膜元件 39
圖1-2 雙壓電層結構之SAW元件 40
圖2-1 AlN的晶體構造:(a)變形四面體結構,(b)單位晶胞圖,(c)纖鋅礦之立體結構示意圖,其中黑球代表鋁原子,白球代表氮原子 41
圖2-2 複三方錐面示意圖 42
圖2-3 (a)當溫度低於居里溫度時,LiNbO3晶體呈現鐵電性
(b)當溫度高於居里溫度時,LiNbO3晶體呈現順電性 42
圖2-4 直流輝光放電結構與電位分佈圖 43
圖2-5 平面型圓形磁控之結構圖 44
圖2-6 平面磁控結構及電子運動路徑圖 44
圖2-7 反應性濺射之模型 45
圖2-8 由縱波與剪波組合而成的SAW:(a)縱波傳播模式,(b)剪波傳播模式,(c)SAW傳播模式 46
圖2-9 設計SAW元件的窗口函數技術 47
圖3-1 射頻磁控濺鍍系統構造圖 48
圖3-2 射頻濺鍍系統操作之流程圖 49
圖3-3 IDT 電極製作之流程圖 50
圖3-4 舉離法製程之示意圖 51
圖3-5 電路板之設計圖 52
圖4-1 不同濺鍍時間下,AlN薄膜沈積在LiNbO3基板上之XRD圖;固定條件為濺鍍功率370W、腔室壓力15mTorr、氮氣濃度40﹪、基板溫度400℃ 53
圖4-2 不同濺鍍時間下,AlN薄膜沈積在ST-quartz基板上之XRD圖;固定條件為濺鍍功率370W、腔室壓力15mTorr、氮氣濃度30﹪、基板溫度400℃ 54
圖4-3 不同濺鍍時間下,AlN薄膜沈積在LiNbO3基板上之表面的SEM照片;固定條件為濺鍍功率370W、腔室壓力15mTorr、氮氣濃度40﹪、基板溫度400℃、氮氣濃度60﹪、基板溫度400℃ 55
圖4-4 不同濺鍍時間下,AlN薄膜沈積在LiNbO3基板上之剖面的SEM照片;固定條件為濺鍍功率370W、腔室壓力15mTorr、氮氣濃度40﹪、基板溫度400℃;圖(a)中的Bar為0.25μm。圖(b)及圖(c)中的Bar為1μm。 56
圖4-5 AlN薄膜沈積在LiNbO3基板上的濺鍍時間對薄膜厚度之關係 51
圖4-6 不同濺鍍時間下,AlN薄膜沈積在ST-quartz基板上之表面的SEM照片;固定條件為濺鍍功率370W、腔室壓力15mTorr、氮氣濃度30﹪、基板溫度400℃。 58
圖4-7 不同濺鍍時間下,AlN薄膜沈積在ST-quartz基板上之剖面的SEM照片;固定條件為濺鍍功率370W、腔室壓力15mTorr、氮氣濃度30﹪、基板溫度400℃;圖(a)中的Bar為0.25μm。圖(b)及圖(c)中的Bar為1μm。 59
圖4-8 AlN薄膜沈積在LiNbO3基板上的濺鍍時間對薄膜厚度之關係 60
圖4-9 不同濺鍍時間下,AlN薄膜沈積在LiNbO3基板上之AFM 2D與3D照片;固定條件為濺鍍功率370W、腔室壓力15mTorr、氮氣濃度40﹪、基板溫度400℃ 61
圖4-10 不同濺鍍時間下,AlN薄膜沈積在ST-quartz基板上之AFM 2D與3D照片;固定條件為濺鍍功率370W、腔室壓力15mTorr、氮氣濃度30﹪、基板溫度400℃ 62
圖4-11 (a)AlN/LiNbO3結構中,沈積時間與表面粗糙度的關係(b)AlN/ST-quartz結構中,沈積時間與表面粗糙度的關係 63
圖4-12 IDTs電極照片,波長為35μm的單指叉 64
圖4-13 AlN/LiNbO3結構下,h/λ=0之頻率響應圖 65
圖4-14 AlN/LiNbO3結構下,h/λ=0.04之頻率響應圖 66
圖4-15 AlN/LiNbO3結構下,h/λ=0.09之頻率響應圖 67
圖4-16 AlN/LiNbO3結構下,h/λ對SAW元件中心頻率之關係 68
圖4-17 AlN/ST-quartz結構下,h/λ=0之頻率響應圖 69
圖4-18 AlN/ST-quartz結構下,h/λ=0.05之頻率響應圖 70
圖4-19 AlN/ST-quartz結構下,h/λ=0.13之頻率響應圖 71
圖4-20 AlN/ST-quartz結構下,h/λ對SAW元件中心頻率之關係 72
圖4-21 AlN/ST-quartz結構下,溫度對SAW元件中心頻率之關係 73
圖4-22 AlN/ST-quartz結構下,溫度對SAW元件中心頻率變化分率((f-f0)/f0)之關係 74
圖4-23 AlN/ST-quartz結構下,h/λ對TCF之關係 75
圖4-24 AlN/LiNbO3結構下,溫度對SAW元件中心頻率之關係 76
圖4-25 AlN/LiNbO3結構下,溫度對SAW元件中心頻率變化分率((f-f0)/f0)之關係 77
圖4-26 AlN/LiNbO3結構下,h/λ對TCF之關係……………78
表一 AlN材料的基本特性 79
表二 LiNbO3晶體的基本特性 80
表三 LiNbO3晶體在工業上的應用 81
表四 可用做表面聲波元件的材料 81
表五 反應性射頻磁控濺鍍系統沈積氮化鋁薄膜之系統參數 82
表六 JCPDS DATAS OF AlN POWDER 83
表六 JCPDS DATAS OF LiNbO3 POWDER 84
表七 IDTs電極設計之參數 85

參考文獻 References
參考文獻
[1] R. M. White and F. W. Voltmer, “Direct Piezoelectric Coupling to Surface Elastic”, Appl. Phys. Lett., 17(1965)314-316.
[2] H. Okano, Y. Takahashi, T. Tanaka, K. Shibata and S. Nakano, “Preparation of c-Axis Oriented AlN Thin Films by Low-Temperature Reactive Sputtering”, Jpn. J. Appl. Phys., 31(1992)3446-3451.
[3] S. Okamura, H. Nishi, T. Inada and H. Hashimoto, “AlN Capped Annealed of Si Implanted Semi-Insulating GaAs”, Appl. Phys. Lett., 40(1982)689-690.
[4] K. Tsubouchi and N. Mikoshiba, “Zero-Temperature-Coefficient SAW Devices on AlN Epitaxial Films”, IEEE Trans. on Sonics & Ultrason., SU-32, 5(1985)634-643.
[5] M. Mortia, S. Isogai, K. Tsubouchi and N. Mikoshiba, “Characteristics of the Metal Insulator Semiconductor Structure: AlN/Si”, Appl. Phys. Lett., 38(1981)50-54.
[6] K. S. Stevens, M. Kinniburgh, A. F. Schwartzman, A. Ohtani and R. Beresford, “Demonstration of a Silicon Field-Effect Transistor Using AlN as the Gate Dielectric”, Appl. Phys. Lett., 66(1995)3179-3181.
[7] G. Este, R. Surridge and W. D. Westwood, “Stress Control in Reactively Sputtered AlN and TiN Films”, J. Vac. Sci. Technol., A4(1986)1892-1897.
[8] R. Bensalem, A. Abid and B. J. Sealy, “Evaporated Aluminum Nitride Encapsulating Films”, Thin Solid Films, 143(1986)141-153.
[9] J. S. Wang, K. M. Lakin, “Low-Temperature Coefficient Bulk Acoustic Wave Composite Resonators”, Appl. Phys. Lett., 40(1982)308-310.
[10] T. Shiosaki, T. Yamamoto, T. Oda and A. Kawabata, “Low-Temperature Growth of Piezoelectric AlN Film by rf Reactive Planar Magnetron Sputtering”, Appl. Phys. Lett., 36(1980)643-645.
[11] 王宏文,“淺談表面聲波感測器(下)”,工業材料,91(1994)47-48.
[12] M. B. Schulz, B. J. Matsinger and M. G. Holland: “Temperature Dependence of Surface Acoustic Wave Velocity on α Quartz”, J. Appl. Phys., 41(1970)2755-2765.
[13] M. Pereira da Cunha and E.l. Adler, “High Velocity Pseudosurface Wave (HVPSAW),” IEEE Trans. Ultrasonics, Ferroelectric, and Frequency Control., 42(1995)840.
[14] M. Pereira da Cunha, “Effect of Layer Thickness For GSAW, PSAW and HVPSAW Devices,” IEEE Ultrasonics Symposium Proc.,(1996)97.
[15] D. C. Bertolet, H. Liu and J. W. Rogers, “Initial Stages of AlN Thin-Film Growth on Alumina Using Trimethylamine Alane and Ammonia Precursors”, J. Appl. Phys., 75(1994)5385-5390.
[16] C. J. Sun, P. Kung, A. Saxler, H. Ohsato, K. Haritos and M, Razeghi, “A Crystallographic Model of (001) Aluminum Nitride Epitaxial Thin Film Growth on (001) Sapphire Substrate”, J. Appl. Phys., 75(1994)3964-3967.
[17] A. H. Khan, M. F. Odeh, J. M. Meese, E. M. Charlson, E. J. Charlson, T. Stacy, G. Popovici and M. A. Prelas, “Growth of Oriented Aluminum Nitride Films on Silicon by Chemical Vapour Deposition”, J. Mater. Sci., 29(1994) 4314-4318.
[18] S. Tanaka, R. Scott Kern, J. Bentley and R. F. Davis, “Defect Formation During Hetero-Epitaxial Growth of Aluminum Nitride Thin Films on Silicon Carbide by Gas-Source Molecular Beam Epitaxy”, Jpn. J. Appl. Phys. 35(1996)1641-1647.
[19] M. T. Wauk and D. K. Winslow, “Vacuum Deposition of AlN Acoustic Transducers”, Appl. Phys. Lett., 13(1968)286-288.
[20] F. C. Stedile, I. J .R. Baumvol, W. H. Schreiner and F. L. Freire, “Study on Direct Current Reactive Sputtering Deposition of Aluminum Nitride Thin Film”, J. Vac. Sci. Technol., A10(1992)3272-3277.
[21] M. Penza, M. F. De Riccardis, L. Mirenghi, M. A. Tagliente and E. Verona, “Low Temperature Growth of r.f. Reactively Planar Magnetron-Sputtered AlN Films”, Thin Solid Films, 259(1993)154-162.
[22] R. D. Vispute, H. Wu and J. Narayan, “High Quality Epitaxial Aluminum Nitride Layers on Sapphire by Pulsed Laser Deposition”, Appl. Phys. Lett., 67(1995)1549-1551.
[23] H. Okano, T. Tanaka, K. Shibata and S. Nakano, “Orientation Control of AlN Film by Electron Cyclotron Resonance Ion Beam Sputtering”, Jpn. J. Appl. Phys., 31(1992)3017-3020.
[24] J. Yang, C. Wang, X. Yan, K. Tao, B. Liu, and Y. Fan, "Polycrystalline AlN films of Fine Crystallinity Prepared by Ion-Beam Assisted Deposition," Appl. Phys. Lett., 62(1993)2790-2791,.
[25] L. A. Coldren and R. L. Rosenberg, “Surface-Acoustic-Wave Resonator Filters”, Proc. of the IEEE, 67(1979)147-158.
[26] R. H. Tancrell and M. G. Holland, “Acoustic Surface Wave Filters”, Proc. of the IEEE, 59(1971)393-409.
[27] 廖秋風,“氮化物粉體”,材料與社會,40(1990)59-67.
[28] P. K. Kuo, G. W. Auner and Z. L. Wu, “Microstructure and Thermal Conductivity of Epitaxial AlN Thin Films”, Thin Solid Films, 253 (1994) 223-227.
[29] E. Ruiz, S. Alvarez and P. Alemany, “Electronic Structure and Properties of AlN”, Physical Review B, 49(1994)7115-7123.
[30] R. S. Weis and T. K. Gaylord, “Lithium Niobate: Summary of Physical Properties and Crystal Structure”, Appl. Phys. A. 37(1985)191-203
[31] 余素楨,晶體之結構與性質,國立編譯館,1993.
[32] B. D. Zaitsev and I. E. Kuznetsova, “Behavior of Acoustic Axes and Internal Conical Refraction in LiNbO3 an SrTiO3 Crystals Placed in an External Electric Field”, IEEE Trans. Ultra. Ferro. And Freq., 45(2)(1998)361-366.
[33] 顏豐明,“高熱傳導率氮化鋁基板材料之簡介”,材料與社會,73(1993)45-46.
[34] 施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,(1990)425.
[35] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”, van Nostrand Reinhold, (1980)201.
[36] F. Shinoki and A. Itoh : J. Appl. Phys., 46(1975)3381.
[37] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, (1991)134.
[38] E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A140(1991)696-701.
[39] 鄭建銓,”質子交換鈮酸鋰與射頻濺鍍氮化鋁薄膜之表面聲波特性研究”,中山大學電機工程研究所博士論文,(1996)。
[40] 王宏灼,”反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所碩士論文,(1995)。
[41] 陳文榮,”反應性射頻濺鍍法在砷化鎵基板上沈積氮化鋁薄膜之研究”,國立中山大學電機工程研究所碩士論文,(1996)。
[42] 賴二琨,”二氧化矽基板上沈積氮化鋁薄膜之表面聲波研究”,國立中山大學電機工程研究所碩士論文,(1997)。
[43] 林升強,”鈮酸鋰基板與射頻濺鍍氮化鋁薄膜之表面聲波研究”,國立中山大學電機工程研究所碩士論文,(1998)。
[44] 高國陞,”鈮酸鋰基板上沈積氮化鋁薄膜及其表面聲波元件之應用”,國立中山大學電機工程研究所碩士論文,(1999)。
[45] 蔡家龍,”製程參數對濺射沈積氮化鋁薄膜之影響”,國立中山大學電機工程研究所碩士論文,(2000)。
[46] 陳健興,“氮化鋁薄膜在鈮酸鋰基板上之表面聲波特性”, 國立中山大學電機工程研究所碩士論文,(2001)。
[47] H. Matthews, “Surface Wave Filters Design, Construction, and Use”, John Wiley & Sons, (1979)20.
[48] A. J. Slobodnik, JR, T. L. Szabo, and K. R. Laker, “Miniature Surface Acoustic Wave Filters”, Proc. IEEE 67(1979)129-132.
[49] C. Campbell, “Surface Acoustic Wave Devices and Their Signal Processing Applications”, Academic Press, INC, 1989, P. 35-36.
[50] D. A. Berlincourt, D. R. Curran, and H. Jaffe, in Physical Acoustics, W. P. Mason, Ed., vol. 1A. New York: Academic Press, 1964, pp. 233-242.
[51] W. R. Smith, H. M. Gerard, J. H. Collins, T. M. Reeder and H. J. Shaw, “Analysis of Interdigital Surface Wave Transducers by Use of an Equivalent Circuit Model”, IEEE Trans. Microwave Theory & Technol. 17(1969)856.
[52] J. W. Soh, W. J. Lee, J. H. Park and S. W. Lee, “SAW Characteristic of AlN Films Deposited on Various Substrates Using ECR Plasma Enhanced CVD and Reactive RF Sputtering”, IEEE Ultrasonics Symposium., 1(1996)299-302.
[53] J. A. Thornton, “The Microstructure of Sputter-Deposited Coatings”, J. Vac. Sci. Technol, A4(1986)3059-3065.
[54] 陳溪山,”反應性射頻濺鍍氮化鋁薄膜的生長機制與微結構之研究”,國立中山大學材料科學工程研究所碩士論文,(1998)。
[55] J. J. Campbell and W. R. Jones, “A Method for Estimating Optical Crystal Cuts and Propagation Directions for Excitation of Piezoelectric Surface Wave”, IEEE Trans. on Sonics and Ultrasonics, SU-15(1968)209-217.
[56] C. Caliendo, G. Saggio, P. Verardi and E. Verona, “Piezoelectric AlN Film for SAW Devices Applications”, Proc. IEEE Ultrason. Symp., 1993, pp.249-252.
[57] G.W. Farnell “SAW Propagation in Piezoelectric Solids”, Computer Aided Design of Surface Acoustic Wave Devices.
[58] Y. Shibata, Y. Kanno, K. Kaya, M. Kanai and T. Kawai, “Formation and Surface Acoustic Wave Properties of LiNbO3/AlN/Sapphire”, Jpn. J. Appl. Phys., 34(1995) L 320-322.
[59] K. Sugal, K. Tsubouchi and N. Mikoshiba, “Zero Temperature Coefficient Surface-Acoustic-Wave Delay Lines on AlN/Al2O3”, Jap. J. Appl. Phys., 21(5)( 1982)L303-L304.
[60] K. Yamanouchi, H. Satoh, T. Meguro, Y. Wagatsuma, “High Temperature Stable GHz-Range Low-loss Wide Band Transducers and Filter Using SiO2/LiNbO3, LiTaO3”, IEEE Trans. Ultrason. Ferroelectric & Frequency Control, 42(3)(1995)392-396,.
[61] T. E. Parker and M.B. Schulz, Proc. IEEE Ultrason. Symp., 1974, pp.295-298.
[62] T. E. Parker and H. Wichansky, Proc. IEEE Ultrason. Symp., 1975, pp.503.
[63] K. Tsubouchi, and N. Mikoshiba, “Zero-Temperature-Coefficient SAW Devices on AlN Epitaxial Films”, IEEE Trans. Sonics Ultrason., SU-32(5)(1985)634-644.
[64] H. Okano, N. Tanaka, Y. Takahashi, K. Shibata, and S. Nakano, “Preparation of Aluminum Nitride Thin Films by Reactive Sputtering and Their Applications to GHz-Band Surface Acoustic Wave Devices”, Appl. Phys. Lett. 64(2)(1994)166-168.
[65] K. M. Lakin, K. T. McCarron and J. F. McDonald, “Temperature Compensated Bulk Acoustic Thin Film Resonators”, IEEE Ultrason. Symp., 2000, pp. 855-859.
[66] K. Sugal, K. Tsubouchi and N. Mikoshiba, “Zero Temperature Coefficient Surface-Acoustic-Wave Delay Lines on AlN/Al2O3”, Jpn. J. Appl. Phys., 21(5)(1982)L303-L304.
[67] K. Kaya, H. Takahashi, Y. Shibata, Y. Kanno and T. Hirai, “Synthesis and Surface Acoustic Wave Properties of AlN Thin Films Fabricated on (001) and (110) Sapphire Substrates Using Chemical Vapor Deposition of AlCl3-NH3 System”, Jpn. J. Appl. Phys., 36(5A)(1997)2837-2840.
[68] P.H. Carr, Ultrasonics Symp. Proc., IEEE Cat 74 CHO 896-1SU, (1974), 286.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code