Responsive image
博碩士論文 etd-0712104-105102 詳細資訊
Title page for etd-0712104-105102
論文名稱
Title
微渠道內流場之觀測與速度量測
Flow Visualization and Velocity Measurements in a Liquid Microchannel
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
83
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-24
繳交日期
Date of Submission
2004-07-12
關鍵字
Keywords
微流體、微渠道
microchannel, MPIV
統計
Statistics
本論文已被瀏覽 5632 次,被下載 2567
The thesis/dissertation has been browsed 5632 times, has been downloaded 2567 times.
中文摘要
本論文所採用的微渠道是以準分子雷射配合二道不同尺寸的光罩以拖拉的方式製作而成,配合微流量控制器、數位式進出口壓力及MPIV量測流體流經微渠道內的情形。實驗的工作物質採用DI Water以去除流體流經微渠道時所產生的靜電效應。
實驗結果顯示,在微渠道中流體比在傳統大管中更早進入紊流區,且不論進出口壓力差、摩擦因子、摩擦因子比均比傳統值來的大。另一方面,傳統管內流的壁邊速度為零,但由MPIV的量測結果顯示,在微渠道的壁邊存在著滑動速度。
Abstract
A microparticle image velocimetry (MPIV) system has been used to measure streamwise and spanwise velocity fields along a 100 ×200 ×20 mm microchannel with a hydraulic diameter of 133.3 at 10≦Re≦421.4. The measuring technique uses 1 diameter orange fluorescent polystyrene flow tracing particles, a pulsed Nd: YAG double resonant tube laser with a micro electroscope, and a high resolution CCD camera to record particle-image fields. Local velocity profiles as flow proceeds downstream were measured at particular positions to examine the entrance effect and hydrodynamically fully developed length as well as velocity slip at wall for liquid flow in a microchannel. Velocity slip exists with a considerable value over the entire range of Re under study. Moreover, the friction factors were calculated and compared with those of previous study. Good agreement was found which also assesses the accuracy of the present results.
目次 Table of Contents
目錄
頁次
目錄.............................................Ⅰ
圖目錄...........................................Ⅳ
表目錄...........................................Ⅶ
符號說明.........................................Ⅷ
中文摘要.........................................Ⅹ
英文摘要..................................... ⅩⅠ
第一章 緒論......................................1
1-1 前言...............................................1
1-2 背景與目地................................2
1-3 文獻回顧..................................3
第二章 實驗系統設備..............................5
2-1 雷射本體..................................5
2-2 CCD camera................................5
2-3 顯微鏡....................................5
2-4 處理器....................................6
第三章 實驗方法、範圍及步驟......................13
3-1 微渠道製程步驟............................13
3-2 實驟步驟..................................14
3-3 實驗範圍..................................14
第四章 實驗數據處理..............................22
4-1 步驟1.擷取image A和image B ..............22
4-2 步驟2.設定Scale factor......................23
4-3 步驟3.Cross-correlation......................24
4-4 步驟4.Define Mask.........................26
4-5 步驟5.Mask...............................27
4-6 步驟6.Peak validation.......................27
4-7 步驟7.Range validation......................28
4-8 步驟8.Moving-Average validation..............28
4-9 步驟9.Average filter.........................30
4-10步驟10.Scale Map..........................32
第五章 結果與討論................................33
5-1 水力直徑為146 µm..........................33
5-1-1壓力降(Pressure drop).......................33
5-1-2 摩擦因子(Friction factor)....................33
5-1-3 過渡區(transition)..........................34
5-1-4 fRe 關係式...............................34
5-1-5 流場觀測 (Flow visualization) ..............35
5-1-6 Entrance Length.........................35
5-2 水力直徑為133 µm.........................36
5-2-1 速度分佈...............................36
5-2-2 進口長度 (Entrance Length)................37
5-2-3 摩擦因子和摩擦因子比 (f and C*)..........38
5-2-4 解析解.................................38
第六章 結論與建議................................62
6-1 結論....................................62
6-2 建議與改進..............................63
參考文獻.........................................65
















圖目錄
圖2-1 MPIV 立體圖.................................7
圖2-2 MPIV雷射本體...............................8
圖2-3 Hisense CCD camera and Microscope..............9
圖2-4處理器......................................10
圖3-1微渠道製程流程圖............................16
圖3-2 MPIV系統和測試區示意圖....................17
圖3-3 每一Re數所量測的五個不同x位置.............18
圖4-1 Image A、Image B.............................23
圖4-2 步驟2......................................24
圖4-3 Interrogation areas............................25
圖4-4 向量轉換流程...............................25
圖4-5 原始向量圖.................................26
圖4-6 步驟4......................................26
圖4-7 Mask後的向量圖.............................27
圖4-8 步驟6......................................27
圖4-9 步驟7......................................28
圖4-10步驟8.....................................29
圖4-11 經過步驟8處理後的向量圖...................30
圖4-12 步驟9.....................................31
圖4-13 經步驟9處理後的向量圖.....................31
圖4-14 Re=84.9 的Scale Map.......................32
圖5-1 壓力差和雷諾數關係圖......................42
圖5-2 f和雷諾數關係圖.........................43
圖5-3摩擦因子和雷諾數關係圖...................44
圖5-4摩擦因子比和雷諾數關係圖..................45
圖5-5 Re=50的particle路徑圖..............................46
圖5-6 Re=150的particle路圖.......................47
圖5-7 Re=471的particle路徑圖.....................48
圖5-8 Re=900的particle路徑圖.....................49
圖5-9 無因次化進口長度和雷諾數關係圖.....................50
圖5-10 MPIV系統和測試區示意圖...................51
圖5-11 Re=84.9在x=10 mm的速度向量圖.............52
圖5-12 Re=421.4在x=10 mm的速度向量圖..........53
圖5-13 等速度曲線分佈圖..........................54
圖5-14 Re=84.9時的速度分佈圖....................55
圖5-15 不同雷諾數下不同x位置的壁邊速度和平圴速度比.......................................56
圖 5-16 Re=84.9時x從0到400 µm的平均速度分佈圖
.........................................57
圖5-17 進口長度和雷諾數關係圖....................58
圖5-18壓力差和雷諾數關係圖......................59
圖5-19摩擦因子比和雷諾數關係圖..................60
圖5-20 f和雷諾數關係圖..........................61
圖5-21平圴速度的解析解..........................62












表目錄
表2-1 MPIV 雷射主要規格..........................11
表2-2 80C60 Hisense PIV CCD camera 詳細規格........12
表3-1 微渠道尺寸表...............................19
表3-2 MPIV量測參數和條件.......................20
表3-3 實驗範圍...................................21
表 5-2 Particle和時間、位置對照表....................40
表 5-1 Particle和時間、位置對照表..........................41




















符號說明
A 微渠道截面積 ( 2)
C 摩擦因子 (fRe)
C* 摩擦因子比, fe/ft
D 水力直徑, 4A/p ( )
f 摩擦因子
ft 傳統理論摩擦因子
H 微渠道高度 ( )
L 微渠道長度 (mm)
Le 進口長度 ( )
P 壓力 (Pa)
p 微渠道周長 ( )
Q 質量流率 (sccm)
Re 雷諾數, D/
U 主流方向平均速度 (mm/s)
u 在x方向局部主流速度(mm/s)
us 壁邊的主流速度 (mm/s)
整體速度 (mm/s)
W 微渠道寬度 ( )
x x座標軸(流動方向)
w 徑向局部速度 (mm/s)


Greek Symbol
動力黏滯係數 (kgm/s)
運動黏滯係數 (m2/s)
流體密度 (kg/m3)
△P 微渠壓力差 (Pa)
Subscripts
e 實驗 , 進口
t 理論
參考文獻 References
參考文獻
1. P. Wu, and W. A., Little, “Measurement of Friction Factors for the Flow of Gases in Very Fine Channels Used for Microminiature Joule-thomson Refrigerators,” Cryogenics, 1983, pp. 273-278.
2. D. B. Tuckerman, “Heat Transfer Microstructures for Integrated Circuits,” 1984, UCRL 53515 Report, Lawrence Livemore National Laboratory, USA.
3. R. J. Adrian, “Particle-imaging Techniques for Experimental Fluid Mechanics,” Annual Review Fluid Mechanics, Vol. 23, 1991, pp. 261-304
4. M. A. Northrup, T. J. Kulp, S. M. Angel, “Fluorescent Particle Image Velocimetry: Application to Flow Measurement in Refractive Index-matched Porous Media,” Appl. Opt, Vol. 30, 1991, pp. 3034-3040.
5. R. J. Adrian, “Particle-imaging Techniques for Experimental Fluid Mechanics,” Ann Rev Fluid 1991, Mech 23, pp. 261-304
6. R. D. Keane, R. J. Adrian, “Theory of Cross-correlation Analysis of PIV Images,” Appl. Sci. Res, Vol. 49, 1992, pp. 191-215.
7. C. E. Willert, M. Gharib, “Three-dimensional Particle Imaging with a Single Camera,” Experiments in Fluids , Vol. 12, 1992, pp. 353-358.
8. A. K. Prasad, R. J. Adrian, C. C. Landreth, P. W. Offutt, “Effect of Resolution on The Speed and Accuracy of Particle Image Velocimetry Interrogation, ” Experiments in Fluids, Vol. 13, 1992, pp. 105-116.
9. C. D. Meinhart, A. K. Prasad, and R. J. Adrian, “A Parallel Digital Processor for Particle Image Velocitmetry,” Measurement Science Technology, Vol. 4, 1993, pp. 619-626.
10. X. F. Peng, G. P. Peterson, and B. X. Wang,“Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels,”Experimental Heat Transfer, Vol. 7, 1994, pp. 249-264.
11. D. Sobek, S. D. Senturia, M. L. Gray, “Microfabricated Fused Silica Flow Chambers for Flow Cytometry,” Proc. From Solid-state Sensors and Actuators Workshop. Hilton Head, SC, 1994, June 13-16.
12. Y. A. Hassan, R. S. Martinez, O. G. Philip, W. D. Schmidl, “Flow Measurement of a Two-phase Fluid Around a Cylinder in a Channel Using Image Velocimetry,” Trans. Am. Nucl. Soc, Vol. 71, 1994, pp. 583-585.
13. R. D. Keane, R. J. Adrian, Y. Zhang, “Super-resolution Particle Imaging Velocimetry,” Meas. Sci. Tech, Vol. 6, 1995, pp. 754-768.
14. K.D. Hinsch, “Three-dimensional Particle Velocimetry Measurement,” Sci. Technol. Vol. 6 , 1995, pp. 742-753.
15. X. F. Peng, and G. P. Peterson, “Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structure,” Int’l J. of Heat Mass Transfer, Vol. 39, 1996, pp. 2599-2608.
16. A. M. Lanzillotto, T. S. Leu, M. Amabile, R. Samtaney, R. Wildes, “A Study of Structure and Motion in Fluidic Microsystems,” AIAA 28th Fluid Dynamics conference, Snowmass Village, CO, 1997, June 29-July2, pp. 97-1790.
17. H. Huang, D. Dabiri, M. Gharib, “On Errors of Digital Particle Image Velocimetry,” Meas. Sci. Technol, Vol. 8 , 1997, pp. 1427-1431.
18. M. Born, E. Wolf, Principles of Optics. Sixth Edition. Cambridge University Press, Cambridge, 1997.
19. J. Westerweel, “Fundamentals of Digital Particle Image Velocimetry,” Meas. Sci. Technol. Vol. 8, 1997, pp. 1379-1383.
20. P. H. Paul, M. G. Garguilo, D. J. Rakestraw, “Imaging of Pressure- and Electrokinetically Driven Flows Through Open Capillaries,” Anal. Chem, Vol. 70, 1998, pp. 2459-2467.
21. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, R. J. Adrian, “A Particle Image Velocimetry System for Microfluids,” Experiments in Fluids, Vol. 25, 1998, pp. 316-319
22. G. M. Mala, and D. Li, “Flow Characteristics of Water in Microtubes,” International J. of Heat and Fluid Flow, Vol. 20, 1999, pp. 142-148.
23. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV Measurements of Microchannel Flow,” Experiments in Fluids, Vol. 27, 1999, pp. 414-419.
24. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, “PIV Measurements of a Microchannel Flow,”1999, Experiments in Fluids, Vol. 27,1999, pp. 414-419.
25. J. E. Rehm, N. T. Clemens, “An Improved Method for Enhancing the Resolution of Conventional Double-exposure Single-frame Particle Image Velocimetry,” Experiments in Fluids, Vol. 26, 1999, pp. 497-504.
26. M. Gad-el-Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture,” ASME J. of Fluids Engineering, Vol. 121,1999, pp. 5-33.
27. W. Qu, G. M. Mala and D. Li, “Pressure-driven Water Flows in Trapezoidal Silicon Microchannels,” Int’l J. of Heat Mass Transfer, Vol. 43, 2000, pp. 353-364.
28. C. Meinhart, S. Wereley, J. Santiago, “A PIV Algorithm for Estimation Time-averaged Velocity Fields,” J. Fluids. Eng. Vol. 27, 2000a, pp. 285-289.
29. C. Meinhart, S. Wereley, M. Gray, “Volume Illumination for Two-dimensional Particle Image Velocimetry,” Meas. Sci. Tech. Vol. 11, 2000b, pp. 809-814.
30. K. Okamoto, S. Nishio, T. Saga, T. Kobayashi, “Stardard Images for Particle-image Velocimetry,” Meas. Sci. Technol, Vol. 11, 2000, pp. 685-691.
31. C. D. Meinhart, S. T. Wereley, M. HB. Gray, “Volume Illumination for Two-dimensional Particle Image Velocimetry,” Meas. Sci. Technol, Vol. 11 , 2000, pp. 809-814.
32. W. Kwang-Hua Chu, J. Fang, “Peristaltic Transport in a Slip Flow,” Eur. Phys, Vol. 16, 2000, pp. 543-547.
33. K. Takehara, R. J. Adrian, G. T. Etoh, K. T. Christensen, “A Kalman Tracker for Super-resolution PIV,” Experiments in Fluids, Vol. 29, 2000, pp. 34-41.
34. L. Tsuei, O. Savas, “Treatment of Interfaces in Particle Image Velocimetry,” Experiments in Fluids, Vol. 29, 2000, pp. 203-214.
35. H. Klank, G. Goranovic, J. P. Kutter, H. Gjelstrup, J. Michelser, and C. H. Westergard, “Micro PIV Measurements in Micro Cell Sorters and Mixing Structures with Three-dimensional Flow Behavior,” 4th International Symposium on Particle Image Velocimetry, Gottingen, Germany,2001, September 17-19.
36. A. K. Singh, E. B. Cummings, D. J. Throckmorton, “Fluorescent Liposome Flow Markers for Microscale Particle Image Velocimetry,” Anal. Chem, Vol. 73, 2001, pp. 1057-1061
37. S. T. Wereley, C. D. Meinhart, “Second-order Accurate Particle Image Velocimetry,” Experiments in Fluids, Vol. 31, 2001, pp. 258-268.
38. M. G. Olsen, R. J. Adrian, “Measurement Volume Defined by Peak-finding Algorithms in Cross-correlation Particle Image Velocimetry,” Meas. Sci. Technol, Vol. 12, 2001, pp. 14-16.
39. G. E. Karniadakis, and A. Beskok, Micro Flows-fundamentals and Simulation, Springer, New York, 2002, pp. 7.
40. J. D. Tian, H. H. Qiu, “Eliminating Background Noise Effect in Micro-resolution Particle Image Velocimetry,” Applied Optics, Vol. 41, 2002, pp. 6849-6857.
41. S. Devasenathipathy, J. Santiago, “Particle Tracking Techniques for Electrokinetic Microchannel Flows,” Anal. Chem. Vol. 74, 2002, pp. 3704-3713.
42. S. T. Wereley, L. Gui, C. D. Meinhart, “Advanced Algorithms for Microscale Particle Image Velocimetry,” AIAA Journal, Vol. 40, 2002, pp. 1047-1055.
43. S. W. Stone, C. D. Meinhart, and S. T. Wereley, “A Microfluidic- based Nanoscope,” Experiments in Fluids, Vol. 33, 2002, pp.613-619.
44. M. S. Islam, K. Haga, M. Kaminaga, R. Hino, and M. Monde, “Experimental Analysis of Turbulent Structure on a Fully Developed Rib-roughened Rectangular Channel with PIV,” Experiments in Fluids, Vol. 33, 2002, pp. 296-306.
45. S. Devasenathipathy, J. G. Santiago, S. T. Wereley, C. D. Meinhart, and K. Tabehara, “Particle Imaging Techniques for Microfabricated Fluidic Systems,” Experiments in Fluids, Vol. 34, 2003, pp. 504-514.
46. S.-S. Hsieh, C.-Y. Lin, C.-F. Huang and H.-H. Tsai, “Liquid Flow in a Microchannel,” Journal of Micromechanics and Microengineering, Vol. 14, 2004, pp. 436-445.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code