Responsive image
博碩士論文 etd-0712105-151044 詳細資訊
Title page for etd-0712105-151044
論文名稱
Title
Ni1-xO-Co1-xO-ZrO2 系統中之布朗運動及相互擴散引發之奈米孔洞和缺陷聚集
Brownian Motion, Cleaving, Healing and Interdiffusioninduced Nanopores and Defect Clusters in Ni1-xO-Co1-xO-ZrO2 System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
169
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-21
繳交日期
Date of Submission
2005-07-12
關鍵字
Keywords
癒合、相變化、氧化鋯散佈氧化鈷、氧化鋯、解理、缺陷聚集、氧化鎳、尖晶石、添加鋯、界面、中孔徑孔洞、氧化鈷、穿透式電子顯微鏡、氧化鋯散佈氧化鎳、晶向重調、晶向關係、順晶
Ni1-xO, Spinel, ZrO2, Paracrystal, Kirkendall effect, Crystallographic relationships, Zirconia dispersed Ni1-xO, Transformation, Co3−δO4, Zr dopant, Healing, Reorientation, Co1-xO, Interface, TEM, Cleaving, Mesopores, Defect clusters, Zirconia dispersed Co1-xO
統計
Statistics
本論文已被瀏覽 5634 次,被下載 0
The thesis/dissertation has been browsed 5634 times, has been downloaded 0 times.
中文摘要
論文提要(中)

本論文是以穿透式電子顯微鏡(TEM)、掃瞄式電子顯微鏡(SEM)配合X光繞射分析(X-ray diffraction),來研究在Ni1-xO-Co1-xO-ZrO2系統中,成分與固溶比例不同的三種二元固溶燒結體,在高溫時由相互擴散所引發的奈米孔洞(nanopores)、布朗運動(Brownian motion)、解理與癒合(cleaving and healing)、缺陷聚集(defect clusters)以及複合材微觀組織之演化。此三種二元固溶燒結體分別為:莫耳比1:2的Ni1-xO/Co1-xO (N1C2)系統;莫耳比1:99的ZrO2/Co1-xO (Z1C99)系統;以及莫耳比1:9的ZrO2/Ni1-xO (Z1N9)系統。

在N1C2系統中,Ni1-xO與Co1-xO粉末於1000oC反應燒結可得單相均質之岩鹽結構(rock salt-type structure)固溶體(Ni0.33Co0.67)1-dO,而後續720oC的退火則使得尖晶石(spinel)顆粒析出在差排和晶界上,形成(NimCo1-m)1-δO之岩鹽相與含鎳之Co3-δO4尖晶石相複合材。由於燒結時緻密化的不完全,次微米的孔洞散佈在岩鹽結構基材之晶界上與晶粒內;而退火時因尖晶石顆粒的析出需要快速排出鎳離子,使得大量奈米孔洞藉由Kirkendall效應在尖晶石相中析出。這些細長且成列的中孔徑孔洞(mesopores)具有{100}之晶面,其形成得利於尖晶石相具有相對較低的平衡空孔濃度(equilibrium vacancy concentration),以及在垂直岩鹽相與尖晶石相界面之拉伸應力影響下,快速之淨空孔流量。此類非計量過度金屬氧化物中成列之中孔徑孔洞,在熱障塗層(thermal barrier bond coating)與非均質觸媒(mass-transport limited heterogeneous catalysis)等領域極具潛力。

而在Z1C99與Z1N9系統中,對稱性較低的非立方晶(non-cubic) ZrO2顆粒在高溫(1650oC)燒結時於高對稱性的立方晶(cubic) Ni1-xO/Co1-xO岩鹽結構晶粒內,可發生晶向轉動與形狀改變,進而達成晶向關係。由TEM的觀察,可發現次微米級的正方晶/斜方晶(tetragonal/monoclinic) ZrO2顆粒與Ni1-xO/Co1-xO達成三種不同的晶向關係:(1)平行磊晶(parallel topotaxy);(2)共晶式磊晶(eutectic topotaxy):[100]Z//[111]C,N, [010]Z//[0 1]C,N;(3)偶發式磊晶(occasional topotaxy):[100]Z//[111]C,N, [01 ]Z//[0 1]C,N。其中,平行磊晶之ZrO2顆粒可與基材形成低能量的{100}Z/C,N與{111}Z/C,N界面,而ZrO2顆粒由偶發式磊晶調整晶向至更低能量的共晶式磊晶,可藉由特定之(100)Z/(111)C,N界面來達成。此種在高溫時,由兩相間特定晶向關係下之低能量界面來趨動顆粒轉動,進而與基材達成晶向關係的現象,可以布朗運動(Brownian-type rotation)來描述之。而岩鹽相晶界之通過(bypassing)與脫離(detachment),亦可使沿晶(intergranular)之ZrO2顆粒發生轉動與形狀變化。

再者,利用高解析的穿透式電子顯微鏡,可研究在Z1C99系統中,因ZrO2之多形性(polymorphism)所引發Co1-xO基地之解理、自發性癒合及析出的現象。實驗結果顯示,試片冷卻時Co1-xO基材沿{100}與{110}晶面發生解理,且隨即由平行磊晶之ZrO2和Co3−δO4尖晶石顆粒自我癒合。由於尺寸效應(size effect)與基材約束(matrix constraint),於解理面析出之奈米尺寸(nanometer-size) ZrO2顆粒得以在室溫維持正方晶結構。

本研究同時觀察,當Zr4+離子於高溫(1650oC)時溶入Ni1-xO/Co1-xO之多晶燒結體,可增加Z1C99與Z1N9試片內部之缺陷濃度,進而造成缺陷集合的順晶排列(paracrystalline array)。此外,當試片自高溫爐冷至900oC以下時,析出溶入Zr4+的Co3-δO4尖晶石顆粒中亦可觀察到依順晶排列的缺陷集合,這些含有順晶(paracrystal)的尖晶石相主要是析出在ZrO2與Co1-xO之界面,以及Co1-xO基材之解理面與差排處。本實驗中順晶的形成是由電荷補償(charge-compensating)與體積補償(volume-compensating)效應,使得四個八面體位置空孔(octahedral vacant site)環繞一個佔據四面體間隙位置(tetrahedral interstitial site)的Co3+離子,形成4:1的缺陷集合,並由此為單位形成規則聚集而稱之。其中,溶入Zr4+的Ni1-xO、Co1-xO及Co3-δO4內部順晶分佈的間距分別為其晶格常數之3.3、2.9與4.9倍,而Zr4+的溶入可使得Co3-δO4中之缺陷集合間距縮小為不含Zr4+時的0.98倍,若與母相Co1-xO相較,則溶入Zr4+的Co3-δO4順晶分佈間距為母相的3.4倍。
Abstract
Abstract
This research is designed to investigate the occurrence of interdiffusion-induced mesopores, Brownian motion, cleaving and healing and defect clusters in three binary composites, i.e. Ni1-xO/Co1-xO, Ni1-xO/ZrO2 and Co1-xO/ZrO2 of the Ni1-xO-Co1-xO-ZrO2 system.

Firstly, the (NimCo1-m)1-δO/Ni-doped Co3-dO4 composites prepared by reactive sintering Ni1-xO and Co1-xO powders (1:2 molar ratio, denoted as N1C2) at 1000oC with or without further annealing at 720oC in air were studied by X-ray diffraction and electron microscopy to clarify the formation mechanism of mesoporous spinel precipitates. Submicron-sized inter- and intragranular pores, due to incomplete sintering and grain boundary detachment, prevails in (Ni0.33Co0.67)1-δO protoxide with rock salt structure; whereas nanosize pores due to Kirkendall effect were restricted to the spinel precipitates having Ni component progressively expelled upon annealing. A rapid net vacancy flux and a tensile misfit stress perpendicular to the protoxide/spinel interface caused the formation of elongated and aligned {100}-faceted mesopores in the spinel precipitates with a relatively low equilibrium vacancy concentration. Aligned mesopores in diffusion zone of nonstoichiometric metal oxides have potential applications on thermal barrier bond coating and mass-transport limited heterogeneous catalysis.

Also, this thesis deals with the reorientation and shape change of low-crystal-symmetry (non-cubic) ZrO2 within the high-crystal-symmetry grains of Co1-xO/Ni1-xO cubic rock salt-type structure. ZrO2/Co1-xO composites 1:99 and ZrO2/Ni1-xO composites 1:9 in molar ratio were sintered and then annealed at 1650oC for 24 and 100 h in air to induce reorientation of the embedded particles. Transmission electron microscopic observations in both systems indicated that the submicron tetragonal/monoclinic (t/m) ZrO2 particles fell into three topotaxial relationships with respect to the host Co1-xO/Ni1-xO grain: (1) parallel topotaxy, (2) “eutectic” topotaxy i.e. [100]Z//[111]C,N, [010]Z//[0 1]C,N and (3) “occasional” topotaxy [100]Z//[111]C,N, [01 ]Z//[0 1]C,N. The parallel topotaxy has a beneficial low energy for the family of {100}Z/C,N and {111}Z/C,N interfaces. The change from the occasional topotaxy to an energetically more favorable eutectic topotaxy was likely achieved by a rotation of the ZrO2 particles over a specific (100)Z/(111)C,N interface. Brownian-type rotation is probable for the embedded t-ZrO2 particles in terms of anchorage release at the interphase interface with the Co1-xO/Ni1-xO host. Detachment or bypassing of rock salt type grain boundaries could also cause orientation as well as shape changes of intergranular ZrO2 particles.

Zirconia-polymorphism-induced cleaving and spontaneous healing by precipitation was studied in Co1-xO polycrystals containing a dispersion of ZrO2 particles. Conventional, analytical, and high-resolution transmission electron microscopy indicated that the Co1-xO matrix cleaves parallel to {100} and {110} planes and heals itself by co-precipitation of parallel-topotaxial ZrO2/Co3-δO4 particles upon cooling. Due to size effect and matrix constraint, nanometer-size ZrO2 precipitates at cleavages were able to retain tetragonality upon further cooling to room temperature.

Paracrystalline array of defect cluster was shown to form in Zr-doped Ni1-xO and Co1-xO polycrystals while prepared by sintering at relative high temperature, i.e., 1650oC to increase the defect concentration. Paracrystalline array of defect clusters in Co3-δO4 spinel structure also occurred when doped with Zr4+ at high temperature or cooled below 900oC to activate oxy-precipitation of Co3-dO4 at dislocations. transmission electron microscopic observations indicated the spinel precipitate and its paracrystal predominantly formed at the ZrO2/Co1-xO interface and the cleavages/dislocations of the Co1-xO host. Defect chemistry consideration suggests the paracrystal is due to the assembly of charge- and volume-compensating defects of the 4:1 type with four octahedral vacant sites surrounding one Co3+-filled tetrahedral interstitial site. The spacing of paracrystalline distribution is 3.3, 2.9 and 4.9 times the lattice parameter for Zr-doped Ni1-xO, Zr-doped Co1-xO and Zr-doped Co3-dO4. This spacing between defect clusters is about 0.98 times that of the previously studied undoped Co3-dO4. There is much larger (3.4 times difference) paracrystalline spacing for Zr-doped Co3-δO4 than its parent phase of Zr-doped Co1-xO.
目次 Table of Contents
Contents
誌謝 I
論文提要(中) II
Abstract V
Contents VIII
List of Figures XI
Chapter 1. Introduction
1.1. Mesoporous materials 1
1.2. The Kirkendall effect 3
1.3. Nonstoichiometry and defect clusters of rock salt-type structure 5
1.3.1. Fe1-xO
1.3.2. Ni1-xO
1.3.3. Co1-xO and Co3-dO4
1.4. Transformation toughening of ceramics 10
1.5. Shape of rock-salt type and fluorite-type oxides 11
1.5.1 Co1-xO, Ni1-xO and ZrO2 and their interfaces
1.5.2. Shape change of intragranular ZrO2 particles in ZDC
1.6. Scope of this research 15

Chapter 2. On the Mesoporous Spinel Precipitation in (Ni0.33Co0.67)1-dO Protoxide: Implications for Interdiffusion/Oxyexsolution-Induced Mesopores
2.1. Introduction 16
2.2. Experimental 18
2.3. Results 19
2.3.1. XRD
2.3.2. TEM
2.4. Discussion 22
2.4.1. Sintering relic pores in protoxide
2.4.2. Uneven Ni/Co/O flux for local NiO/CoO diffusion couple
2.4.3. Nanosized Kirkendall pores in the spinel
2.4.4. Specific diffusion path at 1000oC vs. 720oC in the Ni-Co-O ternary system in air
2.4.5. Controlled vacancy relaxation at pore surface
2.5. Concluding remarks 28
Figures 29

Chapter 3. Interface-Specific Reorientation and Shape Change of Embedded Tetragonal ZrO2 Particles within Rock Salt-type Co1-xO/Ni1-xO Grains
3.1. Introduction 42
3.2. Experimental 44
3.3. Results 45
3.3.1. XRD and SEM
3.3.2. TEM
3.4. Discussion 50
3.4.1. Phase transformation of embedded ZrO2 particles
3.4.2. Size-dependent orientation change of intragranular particles
3.4.3. Energy cusps specification for embedded particles
3.4.4. Orientation change of intergranular t-ZrO2 particles
3.5. Conclusions 57
Figures 58

Chapter 4. Transformation-Enabled Cleaving and Healing in Zirconia Dispersed Co1-xO
4.1. Introduction 87
4.2. Experimental 88
4.3. Results 89
4.3.1. SEM observations of chemically etched specimens
4.3.2. TEM observations
4.4. Discussion 92
4.4.1. Cleaving-healing of Co1-xO with embedded ZrO2 particles
4.4.2. t→m transformation of ZrO2 precipitates at healing cleavages
4.4.3. Implications to thermal-cycling behavior of ZDC
4.5. Conclusions 96
Figures 98

Chapter 5. Defect cluster of Zr4+ Dissolved Ni1-xO, Co1-xO and Co3-dO4 Spinel
5.1. Introduction 106
5.2. Experimental 108
5.3. Results 109
5.3.1. SEM and XRD
5.3.2. TEM
5.4. Discussion 113
5.4.1. Defect chemistry of Ni1-xO polycrystals
5.4.2 Defect chemistry of Co1-xO polycrystals
5.4.3. Heterogeneous nucleation of Zr-doped paracrystals
5.4.4. Spacing between defect clusters
5.5. Conclusions 121
Figures 123

References 131
Appendix I XXII
Appendix II XXII
參考文獻 References
References
Atkinson A. and Taylor, R.I. “The Diffusion of 63Ni Along Grain Boundaries in Nickel Oxide” Phil. Mag. A, 43, 4 (1981) 979.
Atkinson A., Hughes A.E. and Hammou A., “The Self-Diffusion of Ni in Undoped and Al-Doped NiO Single Crystals,” Phil. Mag. A, 43, 5 (1981) 1071.
Andersson B. and Sletnes J.O., “Decomposition and Ordering in Fel-xO,” Acta Cryst. A, 33 (1977) 268-276.
Balluffi R.W., “The Supersaturation and Precipitation of Vacancies during Diffusion,” Acta Metall., 2 (1954) 194-199.
Barnes R.S. and Mazey D.J., “The Effect of Pressure upon Void Formation in Diffusion Couples,”Acta Metall., 6 1 (1958) 1-7.
Barnes R.S.and Mazey D. J., “The Migration and Coalescence of Inert Gas Bubbles in Metals,” Proc. Roy. Soc., 275 (1963) 47-57
Basu B., Vleugels J. and van der Biest O., “Transformation Behavior of Yttria Stabilized Tetragonal Zirconia Poly-Crystal-TiB2 Pomposites,” J. Mat. Res., 16 (2001) 2158.
Beck J.S., Vartuli J.C., Roth W.J., Leonowicz M.E., Kresge C.T., Schmitt K.D., Chu C.T-W., Olson D.H., Sheppard E.W., McCullen S.B., Higgins S.B. and Schlenker, J.L., “A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates,” J. Am. Chem. Soc., 114 (1992) 10834.
Bentley J., McKernan S., Carter C.B., and Revcolevschi A., Inst. Phys. Conf. Ser. No 138: Section 2. “Electron Microscopy and Analysis,” IOP Publishing. Bristol, UK, (1993) 39.
Bu X. and Feng P., “Crystalline Microporous and Open Framework Materials,” in The Chemistry of Nanostructured Materials, Yang P. (Ed.), World Scientific, Singapore, (2003) 1.
Cahn J.W. and Handwerker A., “Equilibrium Geometries of Anisotropic Surface Interfaces,” Mater. Sci. Eng. A, 162 (1993) 83-95.
Catlow C.R.A. and Fender B.E.F., “Calculations of defect clustering in Fe1-xO,” J. Phys. C: Solid State Phys., 8, (1975) 3267.
Catlow C.R.A. and Stoneham A.M., “Defect Equilibria in Transition Metal Oxides,” J. Am. Ceram. Soc., 64 (1981) 234.
Chain R. and Brandon D.G., “Short-Range Order Phenomena in ZrO2 Solid Solutions,” Advances in Ceramics, vol. 12, Science and Technology of Zirconia II, (1983) 86-95.
Chang W.S., Chen S. and Shen P., “Phase Equilibria of Zirconia-Dispersed Ceramic in NiO-A1203-ZrO2 system,” Mater. Sci. Eng. A, 145 (1991) 113.
Chen H.C. and Mason T.O., “Thermoelectric Study of Cobaltous Oxide Defect Structure,” J. Am. Ceram. Soc., 64, 10 (1981) C130-C133.
Chen J. and Shen P., “On The Rotation of Nonepitaxy Ni1-xO Particles within Zirconia Grain,” Scripta Mater., 37 (1997) 1287.
Chen J. and Shen P., “Defect Clusters and Superstructures of Zr4+ Dissolved Ni1-xO,” J. Solid State Chem., 140 (1998) 361.
Chen W.K. and Jackson R.A., “Oxygen Self-Diffusion in Undoped and Doped Cobaltous Oxide,” J. Phys. Chem. Solids, 30 (1969) 1309.
Chen W.K. and Peterson N.L., “Cation Diffusion, Semiconductivity and Nonstoichiometry in (Co,Ni)O Crystals,” J. Phys. Chem. Solids, 34 (1973) 1193.
Chen Z.H., Ho N.J. and Shen P., “Microstructures of Laser-Treated ZrO2-CeO2-Al2O3 Composites,” Mater. Sci. Eng. A, 196 (1995) 253-260.
Chiang Y-M., Birnie D., and Kingery W.D., Physical Ceramics, Principles for Ceramics Science and Engineering, John Wiley and Sons, NY, (1997) 409.
Claussen N, “Strengthening Strategies for ZrO2-Toughened Ceramics at High Temperatures,” Mater. Sci. Eng., 71 (1985) 23.
Claussen N. and Rühle M., Design of Transformation-Toughened Ceramics, in A.H. Heuer and L.W. Hobbs (eds.), Advances in Ceramics, Vol. 3, Science and Technology of Zirconia, American Ceramic Society, Columbus, OH, (1981) 137.
Cossee P., “Structure and Magnetic Properties of Co3O4 and ZnCo2O4,” Rec. Trav. Chim. Pays-Bas, 75 (1956) 1089.
CRC Handbook of Chemistry and Physics, 80th edition, D.R. Lide (ed.) (1999) 12-37; K.S. Alexandrov et al., Sov. Phys. Sol., State 10 (1968) 1316.
Doo V.Y.and Balluffi R.W., “Structural Changes in Single Crystal Copper-Alpha Brass Diffusion Couples,” Acta Metall., 6 (1958) 428.
Dravid V.P., Lyman C.E., Notis M.R.. and Recolevschi A., “High Resolution Transmission Electron Microscopy of Interphase Interfaces in NiO-ZrO2(CaO),” Ultramicroscopy 29 (1989) 60.
Duffy D. M.. “A Calculation of the Formation Energies of Intrinsic Defects near Grain Boundaries in NiO,” Phil. Mag. A, 50. (1984) 143.
Echigoya J.I. and Hayashi S., “Directional Solidification of CoO-ZrO2 Eutectics,” J. Crystl. Growth, 129 (1993) 699.
Echigoya J.I. and Hayashi S., “Interface Structure of Directionally Solidified of CoO–ZrO2(Y2O3) Eutectic,” Ceram. Trans., 44 (Materials Processing and Design) (1994) 445.
Einstein A., “Investigations of the Theory of the Brownian Movement,” Methuen & Co. London, edited with notes by Furth R. and translated by Cowper A.D. (1926).
El-Shobaky G.A., Hewaidy I.F. and El-Nabarawy, “Sintering of Non-Stoichiometric NiO, CoO and Co3O4 Catalysts,” Surf. Technol., 12 (1981) 309.
Fender B.E.F. and Riley F.D., The Chemistry of Extended Defects in Non-Metallic Solids, L. Eyring and M. O'Keefe (eds.), North-Holland, Amsterdam (1970).
Firouzi A., Kumar D., Bull L.M., Besier T., Sieger P., Huo Q., Walker S.A., Zasadzinski J.A.; Glinka C., Nicol J., Margolese D., Stucky G. D. and Chmelka B.F., “Cooperative Organization of Inorganic-Surfactant and Biomometic Assemblies,” Science, 267 (1995) 1138-1143.
Garvie R.C., “The Occurrence of Metastable Tetragonal Zirconia as a Crystallite Size Effect,” J. Phys. Chem., 69 (1965) 1238.
Gladstone S., Laidler K., Eyring H., “The Theory of Rate Processes,” McGraw-Hill, New York, 1941.
Gleitzer C, Nowotny J., and Rekas M., “Surface and Bulk Electrical Properties of the Hematite Phase Fe2O3,” Apply. Phys. A, 53. 310 (1991).
Goldstein A. N., Echer C. M. and Alivisatos A. P., “Melting in Semiconductor Nanocrystals,” Science, 256 (1992) 1425.
Green D.J., Hannink R.H.J. and Swain M.V., Transformation Toughening of Ceramics, CRC Press, Boca Raton, FL, (1989) 157-197 (and references cited therein).
Grime R.W., Anderson A.B. and Heuer A.H., “Defect Clusters in Nonstoichiometric 3d Transition-Metal Monoxides,” J. Am. Ceram. Soc., 69, 619 (1986).
Grime R.W., Anderson A.B. and Heuer A.H., “Interaction of Dopant Cations with 4:1 Defect Clusters in Non-Stoichiometric 3d Transition Metal Monoxides: A theoretical study,” J. Phys. Chem. Solids, 48, 45 (1987).
Hannink R.H.J., Johnston K.A., Pascoe R.T., Garvie R.C., Microstructure changes during isothermal aging of calcia partially stabilized zirconia alloy, Science and Technology of zirconia I, A. H. Heuer, L. W. Hobbs, (eds.) The American Ceramic Society, Columbus, Ohio, (1984), p. 116.
Harding J. H., in “Advances in Ceramics. Vol. 23, Non-stoichiometric Compounds.” C. R. A. Catlow and W. C. Mackrodt (eds.), p. 229. The American Ceramic Society, Westerville, OH, 1987.
Hartman P., in I. Sunagawaed.(ed) “Morphology of Crystal Part A,” Terra Sci. and D. Reidel Co. Tokyo, (1987) 271 and literature cited therein.
Heuer A.H., Claussen N., Kriven W.M. and Rühle M., “Stability of Tetragonal ZrO2 particles in Ceramic Matrices,” J. Am. Ceram. Soc., 65 (1982) 642.
Holland T.J.B. and Redfern S.A.T., “Unit Cell Refinement from Powder Diffraction Data: the Use of Regression Diagnostics” Mineralogical Magazine, 61 (1997) 65-77.
Hoshino K. and Peterson N. L., “Cation impurity diffusion in CoO and NiO,” J. Phys. Chem. Solids, 45, 963 (1984).
Huo Q. and Margolese, D.I., “Generalized Synthesis of Periodic Surfactant/Inorganic Composite Materials,” Nature, 368, (1994) 317 (and references cited therein).
Iijima S., “Diffraction Studies of Real Atoms and Real Crystals,” Australian Academy of Science, Canberra (1974) 217-218
Jeng M.L. and Shen P., “Thermally Activated Rotation of Ni1-xO Particles within CaO Grains,” Mater. Sci. Eng. A, 287 (2000) 1.
Kern R., Masson A. and Métois J.J., "Migration Brownienne de Cristallites sur une Surface et Relation avec L'épitaxie," Surface Science, 27(1971)483.
Kirkendall E.O., “Diffusion of Zinc in Alpha Brass,” Trans. AIME, 147 (1942) 104.
Koch F. B. and Cohen J. B., “The Defect Structure of Fe1-xO,” Acta Cryst. B, 25, 275 (1969).
Kofstad P., “Non-stoichiometry, diffusion and electrical conductivity in binary metal oxides,” Wiley Interscience, New York (1972).
Koh Y.H., Kong Y.M., Kim S. and Kim H.E., “Behavior of Electric-Field-Induced Strain in PT–PZ–PMN Ceramics,” J. Am. Ceram. Soc., 82 (1999) 1456.
Kowalski K., Moya E.-G.. and Nowotny J., “Grain Boundary Diffusion in CoO,” J. Phys. Chem. Solids, 57 (1996) 153.
Kröger F.A. and Vink H.J., “Relations Between the Concentrations of Imperfections in Crystalline Solids,” Solid State Phys., 3, 307 (1956).
Kresge, C.T., Leonowicz, M.E., Roth, W.J., Vartuli, J.C. and Beck, J.S., “Ordered Mesoporous Molecular Sieves Synthesized by A Liquid-Crystal Template Mechanism,” Nature, 359 (1992) 710.
Kuo L.Y. and Shen P., “On The Rotation of Non-epitaxy Crystallites on Single Crystal Substrate,” Surface Science, 373 (1997) L350.
Lalauze R.L. and Meunier J.H., “Experimental study of NiO electrical conductivity changes under low oxygen pressures,” Oxid. Met., 12, 183 (1978).
Lang S.M., “Axial Thermal Expansion of Tetragonal ZrO2 Between 1150 and 1700oC,” J. Am. Ceram. Soc., 47 (1964) 641
Lanteri S.P.K, Mitchell T.E. and Heuer A.H., “Structure of Incoherent ZrO2/Al2O3 Interfaces,” J. Am. Ceram. Soc., 69 3 (1986) 641-644.
Lee W.H. and Shen P., “On The Coalescence and Twinning of Cubo-Octahedral CeO,” J. Crystal. Growth, 205 (1999) 169-176.
Lee W.H. and Shen P. (2000) “Interdiffusion Induced Defect Microstructures of Co1-xO near Confined Zirconia Particles,” The International Union of Materials Research Societies – 6th International Conference in Asia, Hong Kong, July 23-26, pp. A3.1.
Lee W.H. and Shen P., “Reorientation of Intra- and Intergranular Particles in Sintered Y-PSZ/Co1−xO Composites,” Mater. Sci. Eng. A, 338 (2002a) 253.
Lee W.H. and Shen P., “Thermal-mismatch Induced Cleaving and Spontaneous Healing of Zirconia Dispersed Co1-xO,” Mater. Sci. Eng. A, 332 (2002b) 262.
Lee W.H. and Shen P., “Interdiffusion Induced Defect Microstructures of Co1−xO Near Confined Zirconia Particles,” Micron, 33 (2002c) 555-559
Lee W.H. and Shen P., “Co3-dO4 Paracrystal: 3-D Assembly of Nano-Size Defect Clusters in Spinel Lattice,” J. Solid State Chem., 177 (2004) 101-108.
Li M.Y., “NiO·2CoO岩鹽結構固溶燒結體因退火及顆粒大小引起之尖晶石化和晶向重調,” M.S. Thesis, National Sun Yat-sen University, Kaohsiung, Taiwan, (2001)
Li P., Chen I.W., and Penner-Hahn J.E., “X-Ray-Absorption Studies of Zirconia Polymorphs. I. Characteristic Local Structures,” Phys. Pev. B, 48 (1993) 10063.
Li P., Chen I.W., and Penner-Hahn J.E., “X-Ray-Absorption Studies of Zirconia Polymorphs. II. Effect of Y2O3 Dopant on ZrO2 Structure,” Phys. Rev. B, 48 (1993) 10074.
Li P., Chen I.W., and Penner-Hahn J.E., “X-Ray-Absorption Studies of Zirconia Polymorphs. III. Static Distortion and Thermal Distortion,” Phys. Rev. B, 48 (1993) 10082.
Lin K.T. and Shen P., “Thermally Activated Rotation of Co1-xO Particles within Zirconia Grains,” Mater. Sci. Eng. A, 270 (1999a) 125.
Lin K.T. and Shen P., “Interdiffusion-Induced Phase Changes of Co1-xO/Zirconia Composites,” J. Solid State Chem., 145 (1999b) 739.
Liu X. and Prewitt C.T., “High-Temperature X-ray Diffraction Study of Co3O4: Transition from Normal to Disordered Spinel,” Phys. Chem. Mineral., 17 (1990) 168-172.
Lin Y.C., Gan D. and Shen P., “Microstructure of Zirconia-(MnZn ferrite) Composites,” Mater. Sci. Eng. A, 188 (1994) 327-334.
Loretto M. H., Electron Beam Analysis of Materials, 2nd edn, Chapman & Hall, London, (1994) 197-214.
Maschmeyer T., Rey F., Sankar G. and Thomas J.M., “Heterogeneous Catalysts Obtained by Grafting Metallocene Complexes onto Mesoporous Silica,” Nature, 378 (1995) 159.
Masson A., Métois J.J. and Kern R., “Migration Brownienne de Cristallites sur une Surface et Relation avec L'épitaxie I. Partie Expérimentale,” Surface Science, 27 (1971) 463.
Métois J.J., Gauch M., Masson A. and Kern R., “Migration Brownienne de Cristallites sur une Surface et Relation avec L'épitaxie III. Cas de L'aluminium sur KCI; Précisions sur le Mécanisme de Glissement,” Surface Science, 30 (1972) 43.
Métois J.J., “Migration Brownienne de Cristallites sur une Surface et Relation avec L'épitaxie IV. Mobilité de Cristallites sur une Surface: Décoration de Gradins Monoatomiques de Surface,” Surface Science, 36 (1973) 269.
Moore R.J. and White J., “Equilibrium Relationships in The System NiO-CoO-O,” J. Mater. Sci., 9 (1974) 1393.
Nielsen J.W. and Dearbon E.F., “The Growth of Single Crystal Magnetic Garnets,” J. Phy. Chem. Solids, 5 (1958) 202-207.
Nowotny J. and Rekas M., “Defect Structure of Cobalt Monoxide: III, The Cluster Model,” J. Am. Ceram. Soc., 72, 7 (1989) 1215-1220.
Nowotny J., Sikora I., and Wagner J. B., “Segregation and Near-Surface Chemical Diffusion of Undoped and Cr-Doped CoO.” J. Am. Ceram. Soc., 65 (1982) 192.
Nowotny J., Weppner W. and Sloma M., Near-Surface Defect Structure of CoO in the Vicinity of the CoO/Co3O4 Phase Boundary, in: J. Nowotny, W. Weppner (eds.), Non-Stoichiometric Compounds Surfaces, Grain Boundaries and Structural Defects, Kluwer Academic Publishers, Dordrecht, (1989) 265-277.
Oku M. and Sato Y., “In-situ X-ray Photoelectron Spectroscopic Study of the Reversible Phase Transition between CoO and Co3O4 in Oxygen of 10-3 Pa,” Applied Surface Sci., 55 (1992) 37-41.
Osburm C.M. and Vest R.W., “Defect Structure and Electrical Properties of NiO. I. High Temperature,” J. Phys. Chem. Solids, 32 (1971) 1331-1347.
Peng C.H., Lin Y.C. and Shen P., “Shape Modification of ZrO2 Particles in Yttrium-Iron Garnet,” Mater. Sci. Eng. A, 203 (1995) L5-L9.
Penn R.L. and Banfield J.F., “Imperfect Oriented Attachment: Dislocation Generation in Defect-Free Nanocrystals,” Science, 281 (1998) 969-971.
Peterson N.L. and Wiley C.L., “Point Defects and Diffusion in NiO,” J. Phys. Chem. Solids, 46 (1985) 43.
Pfeiffer T., Schmalzried H. and Martin M., “On The Morphological Changes on CoO-Surfaces during Vacancy Relaxation Processes (Is DIGM Involved?),” Scripta Metall., 18 (1984) 383.
Poirier J.P., Creep of Crystals, Cambridge University Press, Cambridge (1985) 260.
Poirier J.P., Introduction to The Physics of the Earth’s Interior, Cambridge University Press, Cambridge (1991) 15.
Porter D.A. and Easterling K.E., Phase Transformations in Metals and Alloys, 2nd ed., Chapman & Hall, London (1992).
Prochazka S., Wallace J.S. and Claussen N., “Microstructure of Sintered Mullite-Zirconia Composites,” J. Am. Ceram. Soc., 66 (1983) C125.
Rabier J., Soullard J., “Atomistic Calculations of Point-Defect Interactions with An Edge Dislocation in NiO,” and Puls M.P., Phil. Mag. A, 61 (1990) 99.
Rankin J. and Sheldon B.W., “In Situ TEM Sintering of Nano-sized ZrO2 Particles,” Mater. Sci. Eng. A, 204 (1995) 48.
Ringer S.P., Li W.B., and Easterling K.E., Acta Metall., 40 (1992) 275.
Ríos E., Nguyen-Cong H., Marco J.F., Ganvedo J.R., Chartier P., and Gautier J.L., “Indirect Oxidation of Ethylene Glycol by Peroxide Ion at Ni0.3Co2.7O4 Spinel Oxide Thin Film Electrodes,” Electrochimica Acta, 45, (2000) 4431-4440.
Rühle M., Bischoff E. and Claussen N., Transformation Behavior of Small Zirconia Particles Embedded in Different Ceramic Matrices, in Aaronson H.I., Laughlin D.E., Sekerka R.F. and Wayman C.M. (eds.), Solid-Solid Phase Transformations, Metallurgical Society of AIME, Warrendale, PA, (1982) 1563.
Sayari A., “Mesoporous Materials,” in The Chemistry of Nanostructured Materials, Yang P. (Ed.), World Scientific, Singapore, (2003) 39.
Schaefer D.W., Engineered porous materials, MRS Bulletin 19 (1994) 14-17.
Seitz F., “On The Porosity Observed in The Kirkendall Effect,” Acta Metall. 1 (1953) 355-369.
Shannon R.D., “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides,” Acta Cryst. A, 32 (1976) 751-767.
Shen P., Chen S. and Chang W.S., “Confined ZrO2 Particles in NiO n Al2O3 Spinel,” Mater. Sci. Eng. A, 184 (1994) L5-L9
Shen P., Chen S. and Liu H.S., “Annealing-Induced Defect Clustering at Ni1−xO-Y-Partially-Stabilized ZrO2 Interfaces,” Mater. Sci. Eng. A, 161 (1993) 135.
Shen Y. F., Zerger R.P., DeGuzman R.N., Suib S. L., McCurdy L., Potter D.I. and O'Young C.L., “Manganese Oxide Octahedral Molecular Sieves: Preparation, Characterization, and Applications,” Science, 260, (1993) 511-515.
Siegel R.W., “Exploring Mesoscopia: The Bold New World of Nanostructures,” Physics Today, October (1993) 64.
Smigelskas A.D. and Kirkendall E.O., “Zinc Diffusion in Alpha Brass,” Trans. Met. Soc. AIME, 171 (1947) 130.
Smith W.L. and Hobson A.D., “The Structure of Cobalt Oxide, Co3O4,” Acta Cryst. B, 29 (1973) 362-363.
Sockel H. G. and Schmalzried H., “Coulometric Titration in Transition Metal Oxides,” Ber. Bunsenges. Phys. Chem., 72 7 (1968) 745-754.
Srivastava S.P., Srivastava R.C., Singh I.D. and Pandey S.D., “Temperature Dependence of Thermal Expansion and Infrared Lattice Vibrational Mode of Nickel Oxide,” J. Phys. Soc. Japan, 43 (1977) 885.
Stiglich, J.J., “Interdiffusion and Defect Structure in NiO-CoO Solid Solution”, Ph.D. Thesis, Northwestern University, Evanston, IL (1970)
Stiglich J.J., Cohen J.B. and Whitmore D.H., “Interfiffusion in CoO-NiO Solid Solutions,” J. Am. Ceram. Soc., 56, 3 (1973) 119.
Stiglich, J.J., Whitmore D.H. and Cohen J.B., “Defect Structure in NiO-CoO Solid Solutions,” J. Am. Ceram. Soc., 56, 4 (1972) 211-213.
Stringer J., “Defects and Transport in Oxides,” edited by Seltzer M.S. and Jaffee R.I., Plenum, NY, (1974) 495.
Subbarao E.C., “Zirconia – An Overview,” Advances in Ceramics, Vol. 3, Heuer A.H. and Hobbs L.W. (eds.), Science and Technology of Zirconia, (1981) 1-13.
Suhr D.S., Mitchell T.E. and Keller R.J., Microstructure and Durability of Zirconia Thermal Barrier Coatings, in Claussen N., Rühle M. and Heuer A.H. (eds.), Science and Technology of Zirconia, Advances in Ceramics, Vol. 12, The American Ceramic Society, Columbus, OH, (1984) 503.
Sykora G.P. and MasonT.O., “Defect Studies above 1 Atm Oxygen: NiO and CoO,” in Advanced Ceramics, vol. 23, Nonstoichiometry Compounds, Catlow C.R.A. and Mackrodt W.C. (eds.), The American Ceramic Society, Westerville, OH (1987) 45-53.
Szuber J., “Use of Thermionic Emission for Studying of Point Defects in NiO Single Crystals,” J. Mater. Sci., 19, (1984) 1991.
Tanev P. T. and Pinnavaia T. J., “A Neutral Templateing Route to Mesoporous Molecular Sieves,” Science, 267 (1995) 865-867.
Tasker P.W., ”The Surface Properties of Uranium Dioxide,” Surface Science, 87 (1979) 315.
Teufer G.,” The Crystal Structure of Tetragonal ZrO2,” Acta Crystall., 15 (1962) 1187.
Thompson B.A., Ph. D. Thesis, Rensselaer Polytech. Inst., Troy, New York (1962)
Tomlinson S.M., Catlow C. R.A., and Harding J.H., “Computer Modelling of The Defect Structure of Non-Stoichiometric Binary Transition Metal Oxides,” J. Phys. Chem. Solids, 51 (1990) 477-506
Touloukian Y.S., Kirby R.K., Tayor R.E. and Lee T.Y.R. (eds.), “Thermal Expansion Nonmetallic Solids,” Thermophysical Properties of Matter., Vol. 13, Plenum Pub. New York (1977) 221.
Tripp W.C. and Tallan N.M., “Gravimetric Determination of Defect Concentrations in Nickel Oxide,” J. Am. Ceram. Soc., 53, (1970) 531.
Vallet P. and Raccah P., “Thermodynamic Properties of Solid Iron(II) Oxide,” Mem. Sci. Rev. Metall. 62 (1965) 1-29.
Volpe M.L. and Reddy J., “Cation Self-Diffusion and Semiconductivity in NiO,” J. Chem. Phys., 53, 1 (1970) 117.
Wachtman J.B., “Mechanical Properties of Ceramics,” John Wiley and Sons, New York, (1996) 33.
Wachtman Jr. J.B., Tefft W.E., Lam Jr. D.G. and Apstein C.S., “Exponential Temperature Dependence of Young’s Modulus for Several Oxides,” Phys. Rev., 122 (1961) 1754.
Wang S.R. and Shen P., “Rotation-Coalescence of Confined Particles in Ni1-xO/NiAl2O4 Composites,” Mater. Sci. Eng. A, 251 (1998a) 106.
Wang S.R. and Shen P., “On the Spinel Precipitation in Al-Doped Ni1-xO,” J. Solid State Chem., 140 (1998b) 38-45.
Welberry T.R and Christy A.G., “A Paracrystalline Description of Defect Distributions in Wüstite, Fe1-xO,” J. Solid State Chem., 117 (1995) 398-406.
Welberry T.R. and Christy A.G., “Defect Distribution and The Diffuse X-ray Diffraction Pattern of Wustite, Fe1-xO,” Phys. Chem. Minerals, 24 (1997) 24-38.
Williams D.B., “The Crystal Structure of Tetragonal ZrO2,” Practical Analytical Electron Microscopy in Materials Science, Philips Electronic Instruments, Mahwah, (1984a).
Williams D.B., “Practical Analytical Electron Microscopy in Materials Science,” Philips Electronic Instruments, Inc., Electron Optics Publishing Group, Mahwah, NJ, (1984b) 157.
Wu M.L., Gan D. and Shen P., “Precipitation of Iron Zirconate from Zr4+ Oversaturated Fe2O3-x (I),” Mater. Sci. Eng. A, 297 (2001a) 119.
Wu M.L., Shen P. and Gan D., “Phase Transformation in Reaction-Sintered Gd3Fe5O12–ZrO2 (II),” Mater. Sci. Eng. A, 297 (2001b) 124.
Xia Y., Lu Y., Kamata K., Gates B. and Yin Y. “Macroporous MaterialsContaining Three-Dimensionally Periodic Structures,” in The Chemistry of Nanostructured Materials, Yang P. (Ed.), World Scientific, Singapore, (2003) 69.
Yin Y., Rioux R.M., Erdonmez C.K., Hughes S., Somorjai G.A., and Alivisatos A.P., “Formation of Hollow Nanocrystals through The Nanoscale Kirkendall Effect,” Science, 304 (2004) 711-714.
Yoo H.I. and Lee J.H., “Correlation of the Cationic Charge of Transport with The Nonstoichiometry and The Oxygen Exponents in Col-dO,” J. Phys. Chem. Solids, 57 (1996) 65-73.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.45.92
論文開放下載的時間是 校外不公開

Your IP address is 3.129.45.92
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code