Responsive image
博碩士論文 etd-0712105-175045 詳細資訊
Title page for etd-0712105-175045
論文名稱
Title
高速數位電路中地彈雜訊及其電磁輻射之模擬及解決方法之研究
Modeling and Solutions for Ground Bounce Noise and Electromagnetic Radiation in High-Speed Digital Circuits
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
129
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-18
繳交日期
Date of Submission
2005-07-12
關鍵字
Keywords
高速數位電路、電磁能隙、地彈雜訊、時域有限差分法、訊號品質、電磁干擾
Electromagnetic Interference, Electromagnetic Bandgap, Ground Bounce Noise, Signal Integrity, High-Speed Digital Circuit, Finite-Difference Time-Domain
統計
Statistics
本論文已被瀏覽 5887 次,被下載 3038
The thesis/dissertation has been browsed 5887 times, has been downloaded 3038 times.
中文摘要
現今電腦系統朝向高速、高頻、低電壓等趨勢發展,使得電源系統中地彈雜訊成為影響高速數位電路特性的主要因素。為了分析數位電路中地彈雜訊對訊號品質與電磁輻射的影響,發展一套正確及有效率的演算法是有必要的。本論文著重於兩部分探討,第一部份為發展演算法探討地彈雜訊的影響,我們以FDTD為基礎且發展了等效性電流源法、克希荷夫表面積分公式、二維狹縫修正之FDTD演算法等。第二部分為探討抑制地彈雜訊之方法,本論文提出低週期共平面之電磁能隙電源平面設計,經由實驗與模擬分析可發現,此結構設計具有寬頻地彈雜訊抑制效果與低輻射效率。
Abstract
With the trends of fast edge rates, high clock frequencies, and low voltage levels for the high-speed digital computer systems, the ground bounce noise (GBN) or simultaneously switching noise (SSN) on the power/ground planes is becoming one of the major challenges for designing the high-speed circuits. In order to analyze the impact of the GBN on signal integrity (SI) and electromagnetic interference (EMI), an accurate and efficient modeling approach that considers the active devices and passive interconnects is required. This thesis focuses on two points. One is developing modeling approaches for analyzing the GBN effects, and the other is proposing solutions to reduce it. First, based on the FDTD algorithm several efficient modeling approaches including equivalent current-source method (ECSM), Kirchoff surface integral representation (KSIR), and slot-corrected 2D-FDTD are developed. After that, a power/ground-planes design for efficiently eliminating the GBN in high-speed digital circuits is proposed by using low-period coplanar electromagnetic bandgap (LPC-EBG) structure. Its extinctive behaviors of low radiation and broadband suppression of the GBN is demonstrated numerically and experimentally. Good agreements are seen.
目次 Table of Contents
Abstract i
Contents iii
List of Figures v
List of Tables xiii
Acronyms xiv

1. Introduction 1
1.1 Simultaneous Switching Noise (SSN) 2
1.2 High-speed Digital Circuit Design Trends and Challenges 3
1.3 Low-period Coplanar EBG Structure (LPC-EBG) 4
1.4 Objective and Organization of the Dissertation 5
2. FDTD Modeling Approach 7
2.1 Yee’s Algorithm 7
2.2 Numerical Stability 10
2.3 Absorbing Boundary Condition (PML) 10
2.4 Lumped Circuit Elements and Resistive Voltage Source 11
2.5 FDTD Time-stepping Process 12
2.6 Equivalent Current-Source Method (ECSM) 13
2.6.1 Theory of ECSM 13
2.6.2 Numerical Validity for ECSM 16
2.7 Near-to-Far-Field Transformation 19
2.7.1 Kirchoff Surface Integral Representation (KSIR) 19
2.7.2 Numerical and Experimental Validation 23
2.8 An Efficient 2D-FDTD Algorithm to Model Partitioned Power Planes 30
2.8.1 Theory and Algorithm for Slot-corrected 2D-FDTD 31
2.8.2 Numerical and Experimental Validations for
Slot-corrected 2D-FDTD 35
2.8.3 Incorporation of 1D Transmission Line Model with Slot-corrected 2D-FDTD 38
3. Impacts of SSN/GBN on SI and EMI 50
3.1 Chip-level Simultaneous Switching Noise 51
3.1.1 Parameters Discussion 52
3.1.2 Quiet Driver Effects on SSN 57
3.1.3 Summary 59
3.2 Board-level Ground Bounce Noise 60
3.2.1 Impacts of Through-hole-via Coupling on GBN 61
3.2.2 Impacts of Active IC on GBN 64
3.2.3 EMI Caused by GBN and Trace 69
3.2.4 Traditional Strategies to Reduce Board-level GBN 72
4. LPC-EBG Power/Ground-Planes Structure 76
4.1 Design Concept of the LPC-EBG Structures 76
4.2 1D-equivalent Circuit Model for Stopbnad Prediction 78
4.3 GBN Suppression 83
4.3.1 Frequency Domain 83
4.3.2 Time Domain 89
4.4 Radiated Emission 92
4.5 Impact of LPC-EBG Reference Planes on SI 94
4.5.1 Single-end and Differential Signals 94
4.5.2 Possible Solution of Embedded LPC-EBG Power Planes 97
4.6 Summary 99
5. Conclusion 100
Bibliography 102
Biography 109
Publication list 110
參考文獻 References
[1] R. Senthinathan and J. L. Prince, “Simultaneous switching ground noise calcul- ation for packaged CMOS devices,” IEEE J. Solid-State Circuits, vol. 26, pp. 1724-1728, Nov. 1991.
[2] S. V. den Berghe, F. Olyslager, D. de Zutter, J. d. Moerloose, and W. Temmerman, “Study of the ground bounce caused by power plane resonances,” IEEE Trans. Electromag. Compat., vol. 40, pp. 111-119, May 1998.
[3] A. R. Djordjevic and T. K. Sarkar, “An investigation of delta-I noise on integrated circuits,” IEEE Trans. Electromag. Compat., vol. 35, pp. 134-147, May 1993.
[4] T. L. Wu, Y. H. Lin, J. N. Hwang, and J. J. Lin, “The effect of test system impedance on measurements of ground bounce in printed circuit boards,” IEEE Trans. Electromag. Compat., vol. 43, pp. 600-607, Nov. 2001.
[5] K. Ren, C. Y. Wu, and L. C. Zhang, “The restriction on delta-I noise along the power/ground layer in the highspeed digital printed circuit board,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Colorado, USA, Aug. 1998, pp. 511-516.
[6] T. L. Wu, S. T. Chen, J. N. Huang, and Y. H. Lin, “Numerical and experimental investigation of radiation caused by the switching noise on the partitioned DC reference planes of high speed digital PCB,” IEEE Trans. Electromagn. Compat., vol. 46, pp. 33-45, Feb. 2004.
[7] R. R. Tummala, “SOP: what is it and why? A new microsystem-integration technology paradigm-Moore's law for system integration of miniaturized convergent systems of the next decade,” IEEE Trans. Adv. Packag., vol. 27, pp. 241-249, May. 2004.
[8] T. Sudo, H. Sasaki, N. Masuda, and J. L. Drewniak, “Electromagnetic interference (EMI) of system-on-package (SOP),” IEEE Trans. Adv. Packag., vol. 27, pp. 304-314, May. 2004.
[9] M. Swaminathan, J. Kim I. Novak, and J. P, Libous, “Power distribution networks for system-on-package: status and challenges,” IEEE Trans. Adv. Packag., vol. 27, pp. 286-300, May. 2004.
[10] T. L. Wu, Y. H. Lin, and S. T. Chen, “A novel power planes with low radiation and broadband suppression of ground bounce noise using photonic bandgap structures,” IEEE Microwave and Wireless Comp. Letters, vol. 14, pp. 337-339, July 2004.
[11] F. R. Yang, Y.Q., R. Coccioli, and T. Itoh, “A novel low-loss slow-wave micro -strip structure,” IEEE Microwave and Guided Wave Letters, vol. 8, pp. 372-374, Nov. 1998.
[12] F. R. Yang, K. P. Ma, Y. Q., and T. Itoh, “A uniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1509-1514, Aug. 1999.
[13] R. Coccioli, F. R. Yang, K. P. Ma, and T. Itoh, “Aperture-coupled patch antenna on UC-PBG substrate,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2123-2130, Nov. 1999.
[14] F. R. Yang, K. P. Ma, Y. Q., and T. Itoh, “A novel TEM waveguide using uniplanar compact photonic-bandgap (UC-PBG) structure,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 2092-2098, Nov. 1999.
[15] A. Taflove, Computational Electromagnetic; the Finite-Difference Time-Doamin Method. Norwood, MA: Artech House, 1995.
[16] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol. 14, pp. 302-307, May 1966.
[17] Mur, G., “Absorbing boundary conditions for the finite-difference approximation of the time-domain electromagnetic field equations,” IEEE Trans. Electromag. Compat., vol. 23, pp.377-382, 1981.
[18] J-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114, pp. 185-200, 1994.
[19] S. Katz, T. Thiele, and Allen Taflove, “Validation and extension to three dimen- sions of the Berenger PML absorbing boundary condition for FD-TD meshes,” IEEE Microwave and Guided Wave Letters, vol. 4, pp. 268-270, Aug. 1994.
[20] W. Sui, D. A. Christensen, and C. H. Durney, “Extending the two-dimensional FDTD method to hybrid electromagnetic systems with active and passive lumped elements,” IEEE Trans. Microwave Theory Tech., vol. 40, pp. 724-730, April 1992.
[21] M. Piket-May, A. Taflove, and J. Baron, “FD-TD modeling of digital signal propagation in 3-D circuits with passive and active loads,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 1514-1523, Aug. 1994.
[22] V. A. Thomas, M. E. Jones, M. Piket-May, A. Taflove, and E. Harrigan, “The use of SPICE lumped circuits as sub-grid models for FDTD analysis,” IEEE Microwave and Guided Wave Letters, vol. 4, pp. 141-143, May 1994.
[23] C. N. Kuo, V. A. Thomas, S. T. Chew, B. Houshmand, and T. Itoh, “Small signal analysis of active circuits using FDTD algorithm,” IEEE Microwave and Guided Wave Letters, vol. 5, pp. 216-218, July 1995.
[24] C. N. Kuo, B. Houshmand, and T. Itoh, “Full-wave analysis of packaged micro- wave circuits with active and nonlinear devices: an FDTD approach,” IEEE Trans. Microwave Theory Tech., vol. 45, pp. 819-826, May 1997.
[25] T. Sakurai and A.R. Newton, “Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas,” IEEE J. Solid-State Circuits, vol. 25, pp. 584 –594, April 1990.
[26] R. J. Luebbers, K. S. Kunz, M.Schneider, and F. Hunsberger, “A finite-difference time-domain near zone to far zone transformation,” IEEE Trans. Antennas Propagat., vol. 39, pp. 429-433, April 1991.
[27] C. L. Britt, “Solution of electromagnetic scattering problems using time domain techniques,” IEEE Trans. Antennas Propagat., vol. 39, pp. 429-433, April 1991.
[28] J. De Moerloose and D. De Zutter, “Surface integral representation radiation boundary condition for the FDTD method,” IEEE Trans. Antennas Propagat., vol. 41, pp. 890-896, July 1993.
[29] O. M. Ramahi, “Near- and far-field calculations in FDTD simulations using Kirchhoff surface integral representation,” IEEE Trans. Antennas Propagat., vol. 45, pp. 753-759, May 1997.
[30] A. Namba, O. Wada, Y. Toyota, Y. Fukumoto, Z. L. Wang, R. Koga, T. Miyashita, and T. Watanabe, “A simple method for measuring the relative permittivity of printed circuit board materials,” IEEE Trans. Electromag. Compat., vol. 43, pp. 515-519, Nov. 2001.
[31] Y. H. Lin and T. L. Wu, “Investigation of signal quality and radiated emission of microstrip line on imperfect ground plane: FDTD analysis and measurement,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Montreal, Canada, Aug. 2001, pp. 319-324.
[32] C. Wei, F. Jun, R. Yong, S. Hao, J.L. Drewniak, and R.E.DuBroff, “DC power bus noise isolation with power-plane segmentation,” IEEE Trans. Electromag. Compat., vol. 45, pp. 436-443, May 2003.
[33] C. L. Tsai and T. L. Wu, “An efficient FDTD approach of modeling power delivery planes with SMT decoupling capacitors,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Boston, USA, Aug. 2003, pp. 581-584.
[34] C. T. Wu, G. H. Shiue, S. M. Lin, and R. B. Wu, “Composite effects of reflections and ground bounce for signal line through a split power plane,” IEEE Trans. Adv. Packag., vol. 25, pp. 297-301, May 2002.
[35] Xiaoning Ye, M. Y. Koledintseva, Min Li, and J. L. Drewniak, “DC power-bus design using FDTD modeling with dispersive media and surface mount technology components,” IEEE Trans. Electromag. Compat., vol. 43, pp. 579-587, Nov. 2001.
[36] C. R. Paul, “Incorporation of terminal constraints in the FDTD analysis of trans- mission lines,” IEEE Trans. Electromag. Compat., vol. 36, pp. 85-91, May 1994.
[37] T. P. Montoya, “Modeling 1-D FDTD transmission line voltage sources and terminations with parallel and series RLC loads,” in Proc. IEEE Antennas and Propagation Society Int. Symp., vol. 4, June 2002, pp. 242-245.
[38] A. Vaidyanath, B. Thoroddsen, and J.L. Prince, “Effect of CMOS driver loading conditions on simultaneous switching noise,” IEEE Trans. Comp., Packag., Manufact. Technol., vol. 17, pp. 480-485, Nov. 1994.
[39] R. Senthinathan, G. Tubbs, and M. Schuelein, “Negative feedback influence on simultaneous switching CMOS outputs,” in Proc. of IEEE Custom Integrated Circuits Conference, May 1988, pp. 5.4.1-5.4.5.
[40] A. Kabbani and A. J. Al-Khalili, “Estimation of ground bounce effects on CMOS circuits,” IEEE Trans. Comp., Packag., Manufact. Technol., vol. 22, pp. 316-325, June 1999.
[41] Y. H. Lin and T. L. Wu, “Analysis of radiation caused by SSN and transmission line by combining the equivalent circuits of active IC into FDTD,” in Proc. IEEE Int. Symp. Electromagnetic Compatibility, Santa Clara, USA, Aug. 2004, pp. 277-282.
[42] T. H. Hubing, J. L. Drewniak, T. P. Van Doren, and D. M. Hockanson, “Power bus decoupling on multilayer printed circuit boards,” IEEE Trans. Electromag. Compat., vol. 37, pp. 155-166, May 1995.
[43] X. Minjia, T. H. Hubing, J. Chen, T. P. Van Doren, J. L. Drewniak, and R. E. DuBroff, “Power-bus decoupling with embedded capacitance in printed circuit board design,” IEEE Trans. Electromag. Compat., vol. 45, pp. 22-30, Feb. 2003.
[44] H. Kim, B. K. Sun, and J. Kim, “Suppression of GHz range power/ground inductive impedance and simultaneous switching noise using embedded film,” IEEE Microwave and Wireless Comp. Letters, vol. 14, pp. 71-73, Feb. 2004.
[45] V. Adsure, H. Kroger, and S. Weimin, “Improving signal integrity in circuit boards by incorporating embedded edge terminations,” IEEE Trans. Adv. Packag., vol. 25, pp. 12-17, Feb. 2002.
[46] G.-T. Lei, R. W. Techentin, and B. K. Gilbert, “High frequency characterization of power/ground-plane structures,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 562–569, May 1999.
[47] X. Ye, D. A. Hockanson, M. Li, Y. Ren, W. Cui, J. L. Drewniak, and R. E. DuBroff, “EMI mitigation with multilayer power-bus stacks and via stitching of reference planes,” IEEE Trans. Electromag. Compat., vol. 43, pp. 538-548, Nov. 2001.
[48] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microwave Theory & Tech., vol. 47, pp. 2059-2074, Nov. 1999.
[49] R. Abhari and G. V. Eleftheriades, “Metallo-dielectric electromagnetic bandgap structures for suppression and isolation of the parallel-plate noise in high-speed circuits,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1629-1639, June 2003.
[50] S. Shahparnia and O. M. Ramahi, “Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures,” IEEE Trans. Electromag. Compat., vol. 46, pp. 580-587, Nov. 2004.
[51] T. Kamgaing and O. M. Ramahi, “A novel power plane with integrated simul- taneous switching noise mitigation capability using high impedance surface,” IEEE Microwave and Wireless Comp. Letters, vol. 13, pp. 21-23, Jan. 2003.
[52] L. Brillouin, Wave Propagation in Periodic Structure; Electric Filters and Crystal Lattices. New York: McGraw-Hill, 1946.
[53] D. F. Sievenpiper, “High-impedance electromagnetic surfaces,” Ph.D. dissertation, Dept. Elect. Eng., Univ. California at Los Angeles, Los Angeles, CA, 1999.
[54] S. H. Hall, G. W. Hall, and J. A. McCall, High-speed Digital System Design; A Handbook of Interconnect Theory and Design Practices. New York: John Wiley & Sons. Inc, 2000.
[55] N. Shino and Z. Popovic, “Radiation from ground-plane photonic bandgap micro- strip waveguides,” in IEEE MTT-S Int. Microwave Symp. Dig., June 2002, pp. 1079-1082.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code