Responsive image
博碩士論文 etd-0712106-010919 詳細資訊
Title page for etd-0712106-010919
論文名稱
Title
多管冷陰極螢光燈應用於直下型背光模組之電容均流電路分析與設計
Analysis and Design of a Balance Circuit with Capacitors for Multiple Cold Cathode Fluorescent Lamps in Direct-Type Backlight Module
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-16
繳交日期
Date of Submission
2006-07-12
關鍵字
Keywords
背光模組、洩漏電流、均流電路、冷陰極螢光燈、總電流誤差、阻抗匹配、阻抗比
balance circuit, leakage current, cold cathode fluorescent lamp, total current deviation, impedance ratio, impedance-matching, backlight module
統計
Statistics
本論文已被瀏覽 5628 次,被下載 3485
The thesis/dissertation has been browsed 5628 times, has been downloaded 3485 times.
中文摘要
冷陰極螢光燈置入背光模組時,不可避免地在燈管與鋁背板間會產生寄生電容,導致洩漏電流,進而影響各燈管之電流,改變背光源之發光特性。因此,大型背光模組採用多管冷陰極螢光燈時,關鍵在於如何均衡驅動,以達到均勻之面光源輸出。
本論文旨在探討冷陰極螢光燈設置於直下型背光模組所產生的電流洩漏效應,並根據阻抗匹配原理,利用電容所組成之簡單電路,達到均衡多燈管電流之目的。本研究採用半橋串聯諧振並聯負載換流器架構,配合升壓變壓器,產生一交流高壓,同時驅動多支冷陰極螢光燈。此電路架構配合負載共振電路,配置適當大小之電容,可使燈管電流趨於一致,並根據一系列的實驗結果,定出單、雙高壓驅動多燈管系統可達均流目標範圍內之最大總電流誤差及最小阻抗比準則,以便提供後續設計者參考。
本論文針對16支冷陰極螢光燈管應用於32吋液晶顯示器背光模組,藉由模擬設計完成單、雙高壓驅動電路及電容均流電路,並經實驗結果驗證其可行性、實用性及正確性。
Abstract
When multiple cold cathode fluorescent lamps (CCFLs) are set up in a backlight module, parasitic capacitances are inevitably existent between the lamps and the aluminum back-plank. These parasitic capacitances are different from each other in introducing different leakage currents, and in turn cause current imbalance between lamps with undesired unequal brightness of the backlight module. In order to tackle this current imbalance problem, it relies critically upon a balance driving scheme.
This thesis adopts the impedance-matching principle for a uniform light output. A detailed analysis and design of the balance circuit is implemented in a direct-type backlight module, which employs a series resonant parallel-loaded inverter with a transformer to generate a high AC voltage to drive multiple lamps. Adding appropriate capacitors on the load resonant circuits helps alleviate the discrepancy among lamp currents. Based on the experimental results, the maximum total current deviation is defined as an index of the current imbalance for multiple lamps system. Accordingly, the minimum impedance ratio can be provided for the designers to achieve balance driving.
A prototype of the multi-lamp driving circuit with balance capacitors is designed and built for a backlight module with 16 lamps in a 32-inch liquid crystal display (LCD). Simulation and experimental results demonstrate the effectiveness and feasibility of the current balance scheme.
目次 Table of Contents
中文摘要 I
英文摘要 II
目錄 III
圖表目錄 V
第一章 簡介 1
1-1研究背景 1
1-1-1平面顯示器概述 1
1-1-2背光模組概述 3
1-2研究動機 7
1-3本文大綱 9
第二章 冷陰極螢光燈管之驅動電路 10
2-1冷陰極螢光燈之常見驅動架構 10
2-2多燈管均流技術 13
2-3單管冷陰極螢光燈之測試電路 16
2-4多管冷陰極螢光燈之單高壓驅動架構 18
2-5多管冷陰極螢光燈之雙高壓驅動架構 22
第三章 背光模組之特性分析 24
3-1冷陰極螢光燈管之負載特性分析 24
3-1-1負增量電阻特性 24
3-1-2電流控制型負增量電阻之電路穩定特性 25
3-2冷陰極螢光燈管之電氣特性分析 27
3-3背光模組之洩漏特性與等效模型 31
3-3-1 背光模組之電流洩漏特性 31
3-3-2 背光模組之等效模型 32
第四章 多管冷陰極螢光燈之電容均流電路分析與設計 38
4-1多管冷陰極螢光燈之電容均流電路設計 38
4-1-1電容均流電路設計考量 39
4-1-2電容均流電路設計準則 42
4-2多管冷陰極螢光燈之電容均流電路特性分析 43
4-2-1燈管電流與操作頻率對單高壓驅動之均流特性 44
4-2-2均流電容對單高壓驅動之均流特性 46
4-2-3燈管電流與操作頻率對雙高壓驅動之均流特性 53
4-2-4均流電容對雙高壓驅動之均流特性 54
4-2-5單、雙高壓驅動之總電流誤差 61
4-2-6單、雙高壓驅動之最小阻抗比 64
4-3電路模擬與實驗量測 66
4-3-1單高壓驅動電路模擬 66
4-3-2單高壓驅動電路實測波形 71
4-3-3雙高壓驅動電路模擬 76
4-3-4雙高壓驅動電路實測波形 82
第五章 結論與未來研究方向 90
參考文獻 92
參考文獻 References
[1] S. Tominetti and M. Amiotti, “Getters for Flat-Panel Displays,” Proceedings of the IEEE, Vol. 90, No. 4, April 2002, pp. 540–558.
[2] K. Hinotani, S. Kishimoto, and K. Terada, “Flat Fluorescent Lamp for LCD Backlight,” Proceedings of the Display Research Conference, 1988, pp. 52-55.
[3] Y. Kanazawa, et al., “Method and Apparatus for Driving Display Panel,” U. S. Patent, NO. 5420602, May 30, 1995.
[4] S. Forrest, et al., “The Dawn of Organic Electronics,” IEEE Spectrum, Vol. 37, No. 8, August 2000, pp. 29-34.
[5] A. R. Duggal, “OLED Design for Solid State Lighting Applications,” IEEE Transactions on Lasers and Electro-Optics Society, 2002, pp. 247-248.
[6] Guenther Derra, et al., “UHP Lamp Systems for Projection Applications,” Journal of Physics D: Applied Physics, 2005, pp. 2995-3010.
[7] M. Anandan, D. Ketchum, “Multiplicity of Discharge Channels for a Flat Fluorescent Lamp to Backlight a Full Color LCD,” IEEE Transactions on Electron Devices, Vol. 39, No. 6, June 1992, pp. 1327-1330.
[8] Jim Williams, “A Fourth Generation of LCD Backlight Technology,” Linear Technology, November 1995.
[9] Lighting Handbook, The 8th edition, Illuminating Engineering Society of North America, 1995.
[10] J. P. Krusius, et al., “Approaches Toward Ultra-Large FPDs,” Proceedings of the IEEE, Vol. 90, No. 4, April 2002, pp. 559-580.
[11] M. Gulko and S. B. Yaakov, “Current-Sourcing Push-Pull Parallel-Resonance Inverter (CS-PPRL): Theory and Application as a Discharge Lamp Driver,” IEEE Transactions on Industrial Electronics, Vol. 41, No. 3, June 1994, pp. 285-291.
[12] Y. L. Lin and A. F. Witulski, “Analysis and Design of Current-Fed Push Pull Resonant Inverters-Cold Cathode Fluorescent Lamp Drivers,” IEEE Industry Applications Society 1996 IAS Annual Meeting, Vol. 4, No. 4, October 1996, pp. 2149-2152.
[13] M. Jordan and J. A. O’Connor, “Resonant Fluorescent Lamp Converter Provides Efficient and Compact Solution,” IEEE Applied Power Electronics Conference, APEC, March 1993, pp. 424-431.
[14] J. A. Donahue and M. M. Jovanovic, “The LCC Inverter as a Cold Cathode Fluorescent Lamp Driver,” IEEE Applied Power Electronics Conference, APEC, Vol. 1, Feb. 1994, pp. 427-433.
[15] C. S. Moo, W. M. Chen, and H. K. Hsieh, “Electronic Ballast with Piezoelectric Transformer for Cold Cathode Fluorescent Lamps,” IEE Proceedings-Electric Power Applications, Vol. 150, No. 3, May 2003, pp. 278-282.
[16] B. K. Kates and J. Cummings, “Balanced Feedback System for Floating Cold Cathode Fluorescent Lamps,” U. S. Patent, NO. 6130509, October 10, 2000.
[17] Y. H. Tsai, “Multiple CCFL Current Balancing Scheme for Single Controller Topologies,” U. S. Patent, NO. 6459216, October 1, 2002.
[18] W. H. Lin, C. Y. Chen, D. K. Chang, and C. C. Hsu, “Multi-Lamp Driving System,” U. S. Patent, NO. 6717372, April 6, 2004.
[19] G. H. Kweon, Y. C. Lin, and S. H. Yang, “An Analysis of the Backlight Inverter by Topology,” Proceedings of IEEE ISIE, Vol. 2, June 2001, pp. 896-900.
[20] E. J. P. Mascarenhas, “Applications of Electronic Circuits in Lighting,” IEE Proceedings-Science, Measurement and Technology, Vol. 140, No. 6, Nov. 1993, pp. 425-442.
[21] Y. L. Lin, “Controller and Driving Method for Power Circuit, Electrical Circuit for Supplying Energy and Display Device Having the Electrical Circuit,” Taiwan Patent, NO.233074B, May 21. 2005.
[22] Y. C. Chiang, W. H. Lin, and K. T. Chou, “Power Supply System for Multiple Loads and Driving System for Multiple Lamps,” U. S. Patent NO. 6420839, July 2002.
[23] M. A. D. Costa, M. L. Landerdahl, and R. N. Prado, “Independent Multi-lamp Electronic Ballast,” IEEE Industry Applications Society 2002 IAS Annual Meeting,, Vol. 2, October 2002, pp. 1065-1070.
[24] E. C. Nho, K. H. Jee, and G. H. Cho, “New Soft-Switching Inverter for High Efficiency Electronic Ballast with Simple Structure,” Int. J. Electronic, Vol. 71, No. 3, 1991, pp. 529-542.
[25] K. Yuasa, K. Nishimura, Y. Hara, and Y. Dobashi, “A Low Power Consumption Fluorescent Lamp for LCD Backlight,” IEEE International Conference on Plasma Science, June 1996, pp. 124.
[26] E. Deng and S. Ćuk, “Negative Incremental Impedance and Stability of Fluorescent Lamps,” IEEE Applied Power Electronics Conference, APEC, Vol. 2, February 1997, pp. 23-27.
[27] J. Millman and N. Taub, Pulse, Digital, and Switching Waveforms, Chapter 13, McGraw-Hill Book Co. 1972.
[28] E. E. Hammer and T. K. McGowan, “Characteristics of Various F40 Fluorescent Systems at 60 Hz and High Frequency,” IEEE Transactions on Industry Applications, Vol. IA-21, January 1985, pp. 11-16.
[29] C. S. Moo, H. C. Yen, Y. C. Hsieh, and C. R. Lee, “A Fluorescent Lamp Model for High Frequency Electronic Ballasts,” IEEE Industry Applications Society 2000 IAS Annual Meeting, Vol. 5, October 2000, pp. 3361-3366.
[30] C. S. Moo, Y. C. Chuang, Y. H. Huang, and H. N. Chen, “Modeling of Fluorescent Lamps for Dimmable Electronic Ballasts,” IEEE Industry Applications Society 1996 IAS Annual Meeting, Vol. 4, October 1996, pp. 2136-2140.
[31] C. S. Moo, T. F. Lin, and Y. C. Chuang, “Electronic Ballast for Fluorescent Lamps over Wide Temperature Range,” IEE Proceedings-Electric Power Applications, Vol. 150, No. 2, March 2003, pp. 153-157.
[32] E. E. Hammer, “Cathode Fall Voltage Relationship with Fluorescent Lamps,” Journal of the Illuminating Engineering Society, Winter 1995, pp. 116-122.
[33] K. Misono, “Cathode Fall Voltage of Low-Current Fluorescent Lamps,” Journal of the Illuminating Engineering Society, Summer 1991, pp. 108-115.
[34] M. A. Cayless and A. M. Marsden, Lamp and Lighting, The 3rd Edition, Edward Arnold, 1983.
[35] S. Y. Ron Hui, L. M. Lee, H. S. Chung, and Y. K. Ho, “An Electronic Ballast with Wide Dimming Range, High PF, and Low EMI,” IEEE Transactions on Power Electron, Vol. 16, No. 4, July 2001, pp. 465-472.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code