Responsive image
博碩士論文 etd-0712106-153543 詳細資訊
Title page for etd-0712106-153543
論文名稱
Title
使用鈮酸鋰晶體光纖產生波長轉換之模擬與量測
Simulation and Measurement of Wavelength Conversion Using Periodically Poled Lithium Niobate Crystal Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-25
繳交日期
Date of Submission
2006-07-12
關鍵字
Keywords
鈮酸鋰、波長轉換、分波多工
WDM, Lithium niobate, wavelength conversion
統計
Statistics
本論文已被瀏覽 5653 次,被下載 26
The thesis/dissertation has been browsed 5653 times, has been downloaded 26 times.
中文摘要
藍/綠光雷射可應用的範圍廣泛,如高密度光學儲存、影像顯示、生物分析與水下通訊方面;波長轉換器為DWDM系統中最重要的技術之一,利用非線性效應所製作的波長轉換器具有高的透明性及與可多通道同時轉換,加上容易與玻璃光纖耦合的特性,比傳統光電-電光轉換具有更大的優勢。

本論文探討以雷射加熱基座生長法(LHPG)生長法製作波長轉換元件,藉由外加電場製作週期性極化反轉之鈮酸鋰晶體光纖,並且分析極化反轉與微擺動之關係。針對不同的應用,須要不同之極化反轉週期,以達準相位匹配。對可調式藍/綠光而言,週期為15.45 um,藉由串接式倍頻/和頻效應,經中研院量測,基頻光功率100 mW時,倍頻轉換效率為-9.2 dB,藍光轉換效率為-31.9 dB,基頻光3-dB頻寬為9 nm;經由漸變週期之設計與模擬,當週期變化在16.79-25.79 um,漸變量為30 nm時,在1476-1672 nm基頻光入射波長下,可達到3-dB頻寬為65 nm之可調式藍/綠光輸出;對C-band波長轉換器而言,週期為18.9 um,藉由串接式倍頻/差頻效應產生波長轉換,經量測後當晶體長度為1.8 mm時,等效非線性係數為18.2 pm/V,約為理想值的83 %,當基頻光功率為350 mW、訊號光功率為15 mW時,轉換效率約為-59.3 dB。
Abstract
Blue/Green lasers can be applied in a wide range such as high-density optical storage, display, biomedical analysis and under water communications. C-band wavelength conversion is one of the most key technologies in DWDM system. Optical Wavelength converter using nonlinear effect can provide high transparency, subcarrier-multiplexed channels and can be fused easily and directly with optical fiber. These characteristics have more advantages than those of O/E/O methods.

In this thesis, periodically poled LiNbO3 (PPLN) crystal fiber for wavelength conversion is grown by LHPG method with high-electric-field bias. The relationship between the polarization inversion and micro-swing is analyzed. For different applications, PPLN crystal fiber need appropriate pitches of polarization inversion to meet quasi phase matching. For example, domain period of 15.45 um is used for tunable blue/green lasers. By means of cascaded SHG/SFG effect, when fundamental power is 100 mW, the internal conversion efficiency of SHG and cascaded SHG/SFG were -9.2 dB and -31.9 dB respectively. The SHG 3-dB bandwidth is 9 nm. While the domain pitch varies from 16.79 um to 25.79 um with 30 nm periodic increment , the simulation shows that the cascaded SHG/SFG 3-dB bandwidth is 65 nm in the range of 1476-1672 nm for fundamental wavelength. Domain period of 18.9 um is used for C-band wavelength converter. By means of cascaded SHG/DFG effect, when the crystal length is 1.8 mm, the effective nonlinear coefficient is 18.2 pm/V, which is 83 % of theoretical value. Conversion efficiency is about -59.3 dB when fundamental power and signal power were 350 mW and 15 mW, respectively.
目次 Table of Contents
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
第二章 相位匹配原理與鈮酸鋰晶體結構 4
2.1非線性光學簡介 4
2.2雙折射相位匹配法 7
2.3準相位匹配法 10
2.4鈮酸鋰晶體特性與摻雜 14
第三章 元件製作與區域反轉機制 19
3.1長晶方式與架構 19
3.2極化反轉機制 24
3.3微擺動與極化反轉關係 29
3.4實驗元件製作 33
第四章 串接式二階非線性效應之數值模擬與實驗結果 35
4.1可調式藍/綠光理論分析與量測 35
4.1.1均勻週期產生藍光 35
4.1.2漸變週期實現頻寬拓寬 44
4.2 C-band波長轉換元件設計 50
4.2.1倍頻效率量測與分析 50
4.2.2轉換效率模擬與量測 58
第五章 結論
5.1總結 63
5.2未來展望 63
參考文獻 64
中英對照表 68
附錄:串接式倍頻/和頻模擬程式 70
:串接式倍頻/差頻模擬程式 75
參考文獻 References
[1] Y. Nishida, H. Miyazawa, M. Asobe, O. Tadanaga, and H. Suzuki, “0-dB wavelength conversion using direct-bonded QPM-Zn:LiNbO3 ridge waveguide,” IEEE Photon. Technol. Lett., vol. 7, no. 5, pp. 1049-1051, 2005.
[2] M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5 um-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett., vol. 11, no. 11, pp. 653-655, 1999.
[3] 林嘉進, “準相位匹配鈮酸鋰晶纖之研製,” 國立中山大學光電工程研究所碩士論文, 2002.
[4] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918–1939, 1962.
[5] Y. L. Lu, L. Mao, and N. Ming, “Blue light generation by frequency doubling of an 810 nm cw GaAlAs diode laser in a quasi-phase-matched LiNbO3 crystal,” Opt. Lett., vol. 14, pp. 1037-1039, 1994.
[6] X. Zhu, “Theoretical model of fiber coupling diode end-pumped intra-cavity frequency-doubling laser,” Journal of the GCPD e.V. 6, pp. 18, 2000.
[7] 卓裕傑, “波長轉換用準相位匹配鈮酸鋰晶體光纖之分析與研製,” 國立中山大學光電工程研究所碩士論文, 2003.
[8] B. T. Matthias and J. P. Remeika,“Ferroelectricity in the ilmenite structure,” Phys. Rev., vol. 76, pp. 1886, 1949.
[9] R. L. Byer, J. F. Young, and F. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys., vol. 41 pp. 2320, 1970.
[10] S. C. Abrahams, J. M. Reddy, and J. L. Bernstein, “Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 oC,” J. Phys. Chem. Solids, vol. 27, pp.1019, 1966.
[11] S. C. Abrahams, W. C. Hamilton, and J. M. Reddy, “Ferroelectric lithium niobate. 4. Single crystal neutron diffraction study at 24 oC,” J. Phys. Chem. Solids, vol. 27, pp.1013, 1966.
[12] H. D. Megaw, “A note on the structure of lithium niobate,” Acta. Cryst., A. 24, pp. 583, 1968.
[13] D. H. Jundt, “Temperature-dependent Sellmeier equation for index of refraction, ne, in congruent lithium niobate,” Opt. Lett., vol. 22, no. 20, pp. 1553-1555, 1997.


[14] G. E. Peterson and A. Carbeval,“93Nb NMR linewidths in nonstoichiometric lithium niobate,”J. Chem. Phys., vol. 56, pp.4848, 1972.
[15] P. Lerner, C. Legras, and J. P. Duman, “Stoichiometric desmonocristaux de metaniobate delithium,” J. Crys. Growth, vol. 3/4, pp. 231, 1968.
[16] K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Crys. Growth, vol. 16, p. 327, 1992.
[17] M. Asobe, H. Miyazawam,O. Tadanaga, and H. Suzuki, “A highly damage-resistant Zn:LiNbO3 ridge waveguide and its application to a polarization-independent wavelength converter,” IEEE J. Quantum Electron, vol. 39, pp. 1327-1332, 2003.
[18] L. Razzari, C. Liberale, I. Cristiani, R. Tediosi, and V. Degiorgio, “Wavelength conversion and pulse reshaping through cascaded interactions in an MZI configuration,” IEEE J. Quantum Electron, vol. 39, no.11, pp. 1486-1491, 2003.
[19] G. A. Magel, M. M. Feier, and R. L. Byer, “Quasi-phase-matched second harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett., vol. 56, pp. 108-110, 1990.
[20] L. Hesseling and S. Redfield, “Photorefractive holographic recording if strontium barium niobate fiber,” Opt. Lett., vol. 13, pp. 877-879, 1988.
[21] J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys., vol. 42, pp. 1846-1851, 1971.
[22] S. Thaniyavarn, T. Findakly, D Booher, and J. Moen, “Domain inversion effects in Ti:LiNbO3 integrated opical devices,” Appl. Phys. Lett., vol. 46, pp. 933, 1985.
[23] H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for amplication of nonlinear optical process,” Electron. Lett., vol. 27, pp. 1221, 1991.
[24] K. Shinozaki, T. Fukunaga, K. Watanabe and T. Kamijoh, “Self-quasi-phase-matched second-harmonic generation in the proton exchanged LiNbO3 optical waveguide with periodically domain-inverted regions,” Appl. Phys. Lett., vol. 59, pp. 510, 1991.
[25] D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, pp. 607-609, 1980.


[26]I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using pulsed-field method,” J. Appl. Phys., vol. 40, pp. 1690-1693, 1969.
[27] M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodical poled by applying an external field for efficient blue second harmonic generation,” Appl. Phys. Lett., vol. 62, pp.435-436, 1993.
[28] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3 ,” J. Opt. Soc. Am. B., vol 12, pp. 2102-2116, 1995.
[29] A. A. Ballman and H. Brown, ”Ferroelectric domain reversal in lithium metatantalate,” Ferroelectrics, vol. 4, pp. 189, 1972.
[30] M. Fejer and R. Byer, “Ferroelectric domain structures in single-crystal fibers,” J. Crys. Growth, vol. 78, pp. 135-143, 1986.
[31] L. M. Lee, C. C. Kuo, J. C. Chen, T. S. Chou, Y. C. Cho, S. L. Huang, and H. W. Lee, “Periodical poling of MgO doped lithium niobate crystal fiber by modulated pyroelectric field,”Opt. Comm., vol. 253, pp. 375-381, 2005.
[32] Y. K. Su, S. J. Chang, L. W. Ji, C. S, Chang, L. W. Wu, W. C. Lai, T. H. Fang and K. T. Lam, “InGaN/GaN blue light-emitting diodes with self-assembled quantum dots,” Semicond. Sci. Technol., vol. 19, no. 3, pp. 389-392, 2004.
[33] W. J. Kozlovsky, W. Lenth, E. E. Latta, A. Moser, and G. L. Bona, “Generation of 41 mW of blue radiation by frequency doubling of a GaAlAs diode laser,” Appl. Phys. Lett., vol. 56, pp. 2291-2292, 1990.
[34] Z. Ye, Q. Lou, J. Dong, Y. Weim, and L. Lin, “Compact continuous-wave blue lasers by direct frequency doubling of laser diodes with periodically poled lithium niobate waveguide crystals,” Opt. Lett., vol. 30, no. 1, pp. 73-74, 2005.
[35] P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett., vol. 29, pp. 95-97, 2004.
[36] Paul S. Banks, Michael D. Feit, and Michael D. Perry, “High-intensity third-harmonic generation,” J. Opt. Soc. Am. B, vol. 19, no.1, pp. 104, 2002.
[37] A. Yariv, “Optical Electronics in Modern Communications,” New York, Oxford, pp. 285-293, 1997.
[38] 邱博駿, “波長轉換用鈮酸鋰晶體光纖之研製,” 國立中山大學光電工程研究所碩士論文, 2004.



[39] X. Liu, H. Zhang, Y. Guo, and Y. Li, “Optimal design and applications for quasi-phase-matching three-wave mixing,” IEEE J. Quantum Electronics., vol. 38, no. 9, pp. 1225-1233, 2002.
[40] Z. Xianglong, C. Xianfeng, W. Fei, C. Yuping, X. Yuxing, C. Yingli, “Second-harmonic generation with broadened flattop bandwidth in aperiodic domain-inverted grating,” Opt. Comm., vol. 204, pp. 407-411, 2002.
[41] S. Gao, C. Yang, X. Xiao, and G. Jin, “Broadband and multiple-channel visible laser generation by use of segmented quasi-phase-matching gratings,” Opt. Comm., vol. 233, pp. 205-209, 2004.
[42] M. C. Cardakli, A. B. Sahin, O. H. Adamczyk, A. E. Willner, K. R. Parameswaran, and M. M. Fejer, “Wavelength conversion of subcarrier channels using difference frequency generation in a PPLN waveguide,” IEEE Photonics Technology Letters, vol. 14, no. 9, pp. 1328, 2002.
[43] S. M. Saltiel, A. A. Sukhorukov, and Y. S. Kivshar, “Multistep Parametric processes in nonlinear optics,” Prog. Opt. vol. 44, pp. 14, 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 34.201.173.244
論文開放下載的時間是 校外不公開

Your IP address is 34.201.173.244
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code