Responsive image
博碩士論文 etd-0712110-174648 詳細資訊
Title page for etd-0712110-174648
論文名稱
Title
利用位移鎖相迴路技術之寬頻頻率合成器設計與實現
Design and Implementation of Wideband Synthesizers Using Offset Phase-Locked Loops
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-06-28
繳交日期
Date of Submission
2010-07-12
關鍵字
Keywords
寬頻頻率合成器、相位雜訊、位移鎖相迴路
Wideband Frequency Synthesizer, Offset Phase Locked Loop, Phase Noise
統計
Statistics
本論文已被瀏覽 5691 次,被下載 0
The thesis/dissertation has been browsed 5691 times, has been downloaded 0 times.
中文摘要
本論文採用升降頻鎖相迴路架構,實現應用於數位電視廣播系統發射端之寬頻頻率合成器。首先對此架構之電路雜訊進行理論分析,了解其對於雜訊壓抑之機制以及最佳化效果,同時利用Matlab及ADS模擬相位雜訊表現。最後佐以不同參考源實現一50 MHz~1 GHz寬頻頻率合成器之混成電路模組,並對相位雜訊表現進行討論。第二部分延伸上述架構發展為以位移鎖相迴路為基礎之寬頻頻率合成器,有別於傳統方式,本論文利用兩電壓控制振盪器之差頻及和頻訊號進行鎖相,來達成寬頻操作目的,並且分析相位雜訊表現,模擬與實作出一300 MHz~3.6 GHz寬頻頻率合成器混成電路模組來加以驗證,然後以CMOS製程設計出此一架構之寬頻頻率合成器。本論文也設計另外兩顆寬頻頻率合成器CMOS晶片,其中壓控振盪器分別使用切換電容與切換電感方式之設計,以達成寬頻操作目的。
Abstract
The thesis uses an up-down conversion architecture to realize a wideband frequency synthesizer for digital video broadcasting (DVB) transmission system. At first, the theoretical analysis of this architecture is performed to understand the mechanism to suppress the phase noise in an optimal way. Then, the simulations using Matlab and ADS are carried out to predict the phase noise performance. Based on the above efforts, a 50 MHz ~ 1 GHz wideband frequency synthesizer hybrid circuit is implemented and its phase noise performance, corresponding to different choices of the reference sources, is finally discussed. The second part of this thesis is to extend the up-down conversion architecture to an offset phase-locked loop (PLL) architecture for wideband frequency synthesizers. The difference from the conventional offset PLLs is the phase locking of the signal at either the sum or the difference frequency of two voltage-controlled oscillators (VCOs) to the reference source for the purpose of wideband operation. The phase noise analysis of the proposed offset PLL architecture is provided. In the experiments, a 300 MHz ~ 3.6 GHz wideband frequency synthesizer hybrid circuit is implemented to verify the analyzed phase noise results. In addition, a CMOS wideband frequency synthesizer chip using the proposed offset PLL architecture has been realized. Moreover, another two CMOS wideband frequency synthesizer chips are included in this thesis. It is worth mentioning that the VCOs in these two frequency synthesizer chips use the switched capacitor and inductor techniques to achieve a wideband operation.
目次 Table of Contents
第一章 緒論 1
1.1 研究背景與動機 1
1.2 寬頻頻率合成器架構簡介 2
1.3 論文章節規劃 4
第二章 運用於DVB系統發射端之寬頻頻率合成器雜訊抑制技術 5
2.1 位移式鎖相迴路架構 5
2.2 相位雜訊抑制理論與分析 6
2.3 相位雜訊模擬 10
2.4 混成電路實現 17
2.4.1 迴路濾波器設計 17
2.4.2 兩階段鎖相切換機制 18
2.4.3 實作量測結果 20
第三章位移式寬頻頻率合成器混成電路與CMOS晶片設計 28
3.1 位移式鎖相迴路架構與雜訊分析 28
3.2 混成電路實現 31
3.2.1 迴路濾波器設計 31
3.2.2實作量測結果 33
3.3 CMOS晶片設計 42
3.3.1 電路架構 42
3.3.2 電路設計與模擬 43
3.3.3 晶片量測結果 47
第四章 切換電容與電感式寬頻頻率合成器CMOS晶片設計 53
4.1 具切換電容陣列之寬頻頻率合成器 53
4.1.1 電路架構 53
4.1.2 電路設計與模擬 53
4.1.3 晶片量測結果 61
4.2 具切換電感與電容陣列之寬頻頻率合成器 65
4.2.1 電路架構 65
4.2.2 電路設計與模擬 66
4.2.3 晶片量測結果 69
第五章 結論 74
參考文獻 76
參考文獻 References
[1] Y. Wu, E. Pliszka, B. Caron, P. Bouchard, and G. Chouinard, “Comparison of terrestrial DTV transmission systems: the ATSC 8-VSB, the DVB-T COFDM, and the ISDB-T BST-OFDM,” IEEE Trans. Broadcast., vol. 46, pp. 101-113, Jun. 2000.
[2] D. Petrovic, W. Rave, and G. Fettweis, “Effects of phase noise on OFDM systems with and without PLL: characterization and compensation,” IEEE Trans. Comm., vol. 55, pp. 1607-1616, Aug. 2007.
[3] H.G. Ryu, Y.S. Li, and J.S. Park, “Nonlinear analysis of the phase noise in the OFDM communication system,” IEEE Trans. Consumer Electronics, vol. 50, pp. 54-63, Feb. 2004.
[4] A.G. Armada, “Understanding the effects of phase noise in orthogonal frequency division multiplexing (OFDM),” IEEE Trans. Broadcast., vol. 47, pp.153-159, June 2001.
[5] R.E. Best, Phase-Locked Loops, 5th ed., New York, NY: McGraw-Hill Inc., 2003.
[6] U. L. Rohde, Microwave and Wireless Synthesizers: Theory and Design, NJ: John Wiley & Sons Inc., 1997.
[7] Intel Corporation, IEEE 802.16 and WiMAX : Broadband Wireless Access for Everyone, Intel, Inc., 2003.
[8] D.L.M. Cheung and H.C. Luong, “A 1.8-V 40-mW wide-band CMOS synthesizer for cable tuner applications,” Asian Solid-State Circuits Conference, pp. 381-384, Nov. 2005.
[9] Y. Tang, A. Aktas, M. Ismail, and S. Bibyk, “A fully integrated dual-mode frequency synthesizer for GSM and Wideband CDMA in 0.5μm CMOS,” Circuits and Systems, MWSCAS, vol. 2, pp. 866-869, Aug. 2001.
[10] Y.F. Sun, J. Qiao, J. Li, R. He, C.W. Liu, W.G. Rhee, S.H. Woo, and Z.H. Wang, ”A low-cost, multi-standard ΔΣ fractional-N synthesizer design for WiMAX/WLAN applications,” SoC Design Conference (ISOCC), pp. 100-103, Nov. 2009
[11] W.F. Lou, X.Z. Yan, Z.Q. Geng, and N.J. Wu, “A novel 0.72–6.2GHz continuously-tunable ΔΣ fractional-N frequency synthesizer,” IEEE ASICON, pp. 1085-1088, Oct. 2009.
[12] J.Y. Kim, C.W. Yao, and A.N. Willson, “A programmable 25 MHz to 6 GHz rational-K/L frequency synthesizer with digital Kvco compensation,” IEEE Circuits and Systems, ISCAS, pp. 2629-2632, May 2008.
[13] D.M. Fischette, A.L.S. Loke, M.M. Oshima, B.A. Doyle, R. Bakalski, R.J. DeSantis;, A. Thiruvengadam, C.L. Wang, G.R. Talbot, and E.S. Fang, “A 45nm SOI-CMOS dual-PLL processor clock system for multi-protocol I/O,” IEEE Solid-State Circuits Conference, pp. 246-247, Feb. 2010.
[14] B. Razavi, “RF transmitter architectures and circuits,” IEEE Conf. Custom Integrated Circuits, pp. 197-204, May. 1999.
[15] R.E. Best, Phase-Locked Loops Design, simulation and applications, 6th ed., New York, NY: McGraw-Hill Inc., 2007.
[16] AD9852 CMOS 300 MSPS Complete DDS Data Sheet, Analog Devices Inc., Norwood, MA, 2007.
[17] 何文豪,採用單迴路差異積分調制器之分數式頻率合成器,國立中山 大學電機工程研究所碩士論文,2005。
[18] D. Banerjee, PLL Performance, Simulation, and Design, 4th ed.
[19] S. R. Kurtz, “Mixers as phase detectors,” WJ Communications Inc., Tech. Note, vol. 5, No. 1, Feb. 1978.
[20] 彭康峻,採用雙點差異積分調制方式之寬頻GFSK調制頻率合成器, 國立中山大學電機工程研究所博士論文,2004。
[21] F.D. Flaviis and S.A. Mass, “X-band doubly balanced resistive FET mixer with very low intermodulation,” IEEE Trans. Microwave Theory and Techniques, vol.43, pp. 457-460, Feb. 1995.
[22] M. Teshiba, G. Sakamoto, and T. Cisco, “A Compact SPDT Switch in 0.18um CMOS Process With High Linearity and Low Insertion Loss,” IEEE Compound Semiconductor Integrated Circuit Symposium, pp. 1-3, Oct. 2007.
[23] 羅正斌,頻率合成器之分架構非線性效應研究與混合訊號IC實現,國 立中山大學電機工程研究所碩士論文,2006。
[24] Michael Henderson Perrott, “Techniques for high data rate modulation and low power operation of fractional-N frequency,” Massachusetts Institute of Technology, September 1997.
[25] D. Theil, C. Durdodt, A. Hanke, S. Heinen, S. van Waasen, D. Seippel, D. Pham-Stabner, and K. Schumacher, “A fully integrated CMOS frequency synthesizer for Bluetooth,” in IEEE RFIC Conf. Dig.,2001, pp. 103-103.
[26] H. Zarei, O. Shoaei, S.M. Fakhraie, and M.M. Zakeri, “A 1.4 GHz/2.7 V programmable frequency divider for DRRS standard in 0.6μm CMOS process,” in Proc. 7th IEEE Int. Conf. electronics, circuit and systems, 2000, pp. 887-890.
[27] T. Kamoto, N. Adachi, and K. Yamashita, “High-speed multi-modulus prescaler IC,” in IEEE Int. Conf. Universal Personal Communications Dig., pp. 325-328, 1995.
[28] Patrik Larsson, “High-speed architecture for a programmable frequency divider and a dual-modulus prescaler,” IEEE J. Solid-State Circuits, vol. 31, pp.744-748, May 1996.
[29] R.B. Staszewski, D. Leipold, C.M. Hung, and P.T. Balsara, “A first digitally-controlled oscillator in a deep-submicron CMOS process for multi-GHz wireless applications,” IEEE Radio Frequency Integrated Circuits Symposium, pp. 81-84, June 2003.
[30] P. Andreani and S. Mattisson, “On the use of MOS varactors in RF VCOs” IEEE J. Solid-States Circuits, vol.35, no. 6, pp. 905-910, June 2000.
[31] K. Kurokawa, “Injection-locking of solid state microwave oscillators,” Proc. IEEE, vol. 61, pp. 1386-1409, Oct. 1973.
[32] D.J. Esdale and M.J. Howes, “A reflection coefficient approach to the design of one-port negative impedance oscillators,” IEEE Trans. Microwave Theory Tech., vol. MTT-29, no. 8, pp. 770–776, Aug. 1981.
[33] K.Y. Huang and H.M. Ting, “Theoretical analysis of low phase noise design of CMOS VCO,“ IEEE Microwave and Wireless Components Letters, vol. 15, pp. 33-35, June 2005.
[34] J.J. Kuo, Z.M. Tsai, P.C. Huang, C.C. Chiong, K.Y. Lin, and H. Wang; “A wide tuning range voltage controlled oscillator using common-base configuration and inductive feedback” IEEE Microwave and Wireless Components Letters, vol. 19, pp. 653-655, Oct. 2009.
[35] F. Plessas, and G. Kalivas, “Locking techniques for RF oscillators at 5-6 GHz frequency range” IEEE Electronics, Circuits and Systems Conf. vol. 3, pp. 986- 989, Dec. 2003.
[36] C.J. Li, C.H. Hsiao, F.K. Wang, T.S. Horng, K.C. Peng, “A rigorous analysis of local oscillator pulling in frequency and discrete-time domain” IEEE Radio Frequency Integrated Circuits Symposium, pp. 409-412, June 2009.
[37] Z. Li and Kenneth K.O. "A 1-V Low Phase Noise Multi-Band CMOS Voltage Controlled Oscillator with Switched Inductors and Capacitors," IEEE Radio Frequency Integrated Circuit Symposium, pp.467-470, June 2004.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.119.107.161
論文開放下載的時間是 校外不公開

Your IP address is 18.119.107.161
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code