Responsive image
博碩士論文 etd-0712112-150713 詳細資訊
Title page for etd-0712112-150713
論文名稱
Title
應用於生醫感測之截波穩定連續時間三角積分調變器
Chopper-Stabilized Continuous-time Sigma-Delta Modulator Design for Biomedical Sensing Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
102
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-06
繳交日期
Date of Submission
2012-07-12
關鍵字
Keywords
截波穩定、閃爍雜訊、三角積分調變器、生命體徵監測
chopper-stabilized, flicker noise, human vital functions monitoring, sigma-delta modulator
統計
Statistics
本論文已被瀏覽 5764 次,被下載 941
The thesis/dissertation has been browsed 5764 times, has been downloaded 941 times.
中文摘要
連續時間三角積分調變器在生醫感測研究發展上扮演重要角色,適合用於監測基本的生命體徵(例如,呼吸、心跳)。但由於其生理訊號之強度非常微弱,且屬於低頻訊號,CMOS製程本身的閃爍雜訊源對欲觀察訊號受電路雜訊的影響會造成訊號在辨識上有一定程度的困難。本論文使用截波穩定調變技術來降低訊號頻寬內的雜訊,雜訊模擬採用時域雜訊分析方法,能同時在模擬電路整體效能時也把雜訊因素一併考慮進去。

在電路實現上,在有效頻寬約10Hz,取樣頻率為20.8kHz的情況下,其訊號雜訊失真比達到84.4 dB,其有效位元數達到13.7位元的解析度。使用台積電0.35μm 標準CMOS 2P4M製成完成,其晶片面積為 1.403 x 1.4 mm2。在3 V電源供應下,總功率消耗約為3.46 mW。
Abstract
Continuous-time sigma-delta modulators play an important role in the development of biomedical sensors. It is suitable for monitoring of basic human vital functions (i.e., heartbeat and respiration). However, the physiological signal is very weak and it belongs to low-frequency range, the observed signals are strongly inter¬fered by the intrinsic flicker noise form CMOS transistors, which will cause a certain degree of difficulty in the identification.

This thesis describes the implementation of loop filter using a differential chopper-stabilized configuration to reduce the influence of flicker noise on sigma-delta modulator within the signal bandwidth. The noise analysis of this sigma-delta modulator is calculated by the time-domain noise simulation. This method can take the noise factors into account when analyzing the overall performance.

The proposed sigma-delta modulator is fabricated using TSMC 0.35μm 2P4M CMOS technology. The chip area is 1.403 x 1.4 mm2. With a sampling rate of 20.8 kHz, the modulator achieves 84.4 dB of the peak SNDR and ENOB is 13.7-bit within signal band¬width of 10Hz. It dissipates 3.46 mW under 3V supply voltage.
目次 Table of Contents
誌 謝 i
摘 要 ii
Abstract iii
Contents iv
List of Figures vii
List of Tables xi
Chapter 1 Introduction 1
1.1 Background 1
1.2 Literature Review 2
1.3 Research Motivation 3
1.4 Thesis Organization 4

Chapter 2 Fundamental Theorems of Sigma-Delta Modulator and Related Research 5
2.1 Overview of Analog-to-Digital Converters 5
2.2 Categories of Analog-to-Digital Data Converters 6
2.2.1 Nyquist-Rate ADC 7
2.2.2 Oversampling ADC 12
2.3 Oversampling with Noise-Shaping: ΔΣADC 16
2.3.1 Noise Shaping 17
2.3.2 ΔΣ Modulator 18
2.4 High-Order Sigma-Delta Modulator Architecture 23
2.4.1 Second-Order Sigma-Delta Modulator 23
2.4.2 Single-Loop High-Order Sigma-Delta Modulator 25
2.4.3 Cascade Sigma-Delta Modulator 27
2.5 Summary 28

Chapter 3 Noise Considerations and Method for 1/f Noise Reduction 29
3.1 Noise sources 29
3.1.1 Thermal Noise 30
3.1.2 Flicker Noise 32
3.1.3 Noise Model for MOSFET 33
3.2 Noise Analysis in the Time-Domain 34
3.2.1 Overview of Transient Noise Analysis 34
3.2.2 Modeling Time-Domain Noise Sources 35
3.3 Chopper Stabilization Technique 37
3.3.1 Basic Principle 37
3.3.2 Residual Offset 39
3.4 Summary 41

Chapter 4 System Architecture and Design 43
4.1 Proposed First-Order Sigma-Delta Modulator Utilizing Chopper-Stabilization Based Circuit Technique 44
4.2 Preamplifier 46
4.2.1 Fully Differential Folded-Cascode OPAMP 46
4.2.2 Continuous-Time Common-Mode Feedback (CMFB) 49
4.2.3 Wide-Swing Constant-Gm Bias Circuit 50
4.3 Post-amplifier 51
4.4 Quantizer 55
4.5 Non-overlapping Clock Generator 57
4.6 Synchronous Counter 58

Chapter 5 Experimental Implementation and Results 61
5.1 Design Flow 61
5.2 Layout and Pin Assignment 63
5.3 Circuit Simulation 65
5.3.1 Noise Analysis 65
5.3.2 Simulation Results 68
5.3.3 Comparison 73
5.4 Test Setup and Experimental Results 74
5.4.1 Measuring Environment 74
5.4.2 Power Supply Regulator 75
5.4.3 Measurement Results and Discussion 76
5.5 Summary 82

Chapter 6 Conclusions and Future Works 83
6.1 Conclusions 83
6.2 Future Works 84
Reference 85

參考文獻 References
[1]Y. Yang, C. Li, and D. M. Binkley, “Continuous-time Sigma-Delta Modulator Design for Wireless Biomedical Sensing Applications,” 11th Annual IEEE Wireless and Microwave Technology Conference, Melbourne, FL, pp.1-4, Apr. 2010.
[2]Z. Lu, B. Gosselin, and M. Sawan, “A 16-bit Sigma-Delta Modulator for Low Power Medical Implantable Sensors,” in The 12th IEEE International Confer¬ence on Electronics, Circuits and Systems (ICECS), pp.1-4, 2005.
[3]T. Nieminen and K. Halonen, “A Second-Order Low-Power ΔΣ Modulator For Pressure Sensor Applications,” IEEE NORCHIP Conference, NORCHIP 2010, Nov. 2010.
[4]E. Lopez-Morillo and R. G. Carvajal, “A 1.2-V 140-nW 10-bit Sigma-Delta Modulator for Electroencephalogram Applications,” IEEE Trans. Biomed. Circuits Syst., vol. 2, no. 3, pp. 223-230, Sep. 2008.
[5]R. Jacob Baker, CMOS Mixed-Signal Circuit Design., John Wiley and Sons, Inc., 2002.
[6] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed. Upper Saddle River, NJ: Prentice-Hall, 2009.
[7]D. A. Johns and K. Martin, Analog Integrated Circuit Design, John Wiley & Sons,Inc., 1997.
[8]R. H. Walden, “Analog-to-digital converter survey and analysis,” IEEE J. Select. Areas Commun., vol. 17, pp. 539-550, Apr. 1999.
[9]J. M. de la Rosa, “Sigma-Delta Modulators: Tutorial Overview, Design Guide, and State-of-the-Art Survey,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 58, pp. 1-21, Jan. 2011.
[10]W. Bennett, “Spectra of quantized signals,” Bell Syst. Tech. J., vol. 27, pp. 446 -472, Jul. 1948.
[11]R. del Río et al., CMOS Cascade Modulators for Sensors and Telecom: Error Analysis and Practical Design., New York: Springer, 2006.
[12]O. Shoaei, “Continuous-time delta-sigma A/D converters for high speed applications.,” Ph.D. dissertation, Carleton Univ., Ottawa, ON, Canada, 1995.
[13]H. Inose, Y. Yasuda, and J. Murakami, “A telemetering system by code modulation— Δ —Σ modulation,” IRE Trans. Space Electron. Telemetry, vol. 8, pp. 204–209, Sep. 1962.
[14]J. Candy, “A use of double integration in sigma-delta modulation,” IEEE Trans. Commun., vol. 33, pp. 249–258, Mar. 1985.
[15]R. W. Adams and R. Schreier, “Stability Theory for Sigma-Delta modulators” in Delta- Sigma Data Converter : Theory, Design and Simulation, S. R. Norsworthy, R. Schreier and G. C. Temes, eds. IEEE Press, 1997.
[16] S. Norsworthy, R. Schreier, and G. Temes, Delta-Sigma Data Converters: Theory, Design and Simulation. New York: IEEE Press, 1997.
[17]W. L. Lee and C. G. Sodini, “A topology for higher order interpolative coders,” in Proc. IEEE ISCAS’87, pp. 459–462, May 1987.
[18]Y. Matsuya et al., “A 16-bit oversampling A-to-D conversion technology using triple-integration noise shaping,” IEEE J. Solid-State Circuits, vol. 22, pp. 921 – 929, Dec. 1987.
[19]B. Razavi, Design of analog CMOS integrated circuits, New York: McGraw -Hill, 2001.
[20]D. M. Binkley, Tradeoffs and Optimization in Analog CMOS Design., John Wiley and Sons Ltd., Jun. 2008.
[21]Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed., Boston: McGraw-Hill, 1999.
[22]P. Bolcato and R. Poujois, “A new approach for noise simulation in transient analysis,” Proc. IEEE Int. Symp. Circuits Syst., pp. 887-890, May 1992.
[23]J. A. McNeill, “Jitter in ring oscillators,” Ph.D. dissertation, Boston University, 1994.
[24]A. Demir, E. W. Y. Liu, and A. L. Sangiovanni-Vincentelli, “Time-domain non-Monte Carlo noise simulation for nonlinear dynamic circuits with arbitrary excitations,” IEEE Trans. on CAD, vol. 15, no. 5, pp. 493-505, May 1996.
[25]HSPICE User Guide: RF Analysis. http://www.synopsys.com, 2009.
[26]B. Pellegrini et al, “1/fv noise generators,” in Noise in Physical Systems and 1/f Noise. Amsterdam, Netherlands, Elsevier, 1985.
[27]T. H. Lee and G. Cho, “Monte Carlo based time-domain Hspice noise simulation for CSA-CRRC circuit,” in Proc. 10th Symposium on Radiation Measurements and Applications, 2002.
[28]S. Karthikeyan, S. Mortezapour, A. Tammineedi, and E. Lee, “Low-Voltage Analog Circuit Design Based on Biased Inverting Opamp Configuration,” IEEE Trans. Circuits Syst. II, vol. 47, pp. 176-184, Mar. 2000.
[29]P. E. Allen and D. R. Holberg, CMOS Analog Circuit Design, 2nd ed., New York: Oxford University Press, 2002.
[30]G. M. Yin, F. Op’t Eynde, and W. Sansen, “A high-speed CMOS comparator with 8-b resolution,” IEEE J. Solid-State Circuits, vol. 27, pp. 208–211, Feb. 1992.
[31]E. Farshidi and N. Alaei-sheini, “A Micropower Current-Mode Sigma-Delta Modulator for Biomedical Applications,” IEEE Signal Processing and Communications Applications Conference, SIU 2009, pp. 856-859, Apr. 2009.
[32]National Semiconductor, “LM117/LM317A/LM317 3-Terminal Adjustable Regular Data Sheet,” National Semiconductor, Inc., 1997.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code