Responsive image
博碩士論文 etd-0712113-031646 詳細資訊
Title page for etd-0712113-031646
論文名稱
Title
以電漿輔助分子束磊晶系統成長氮化物脈衝摻雜錳奈米柱之成長與特性研究
Growth and Characterization of Mn Delta-Doped III-Nitrides Nanorods Fabricated by Plasma-Assisted Molecular Beam Epitaxy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
171
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-24
繳交日期
Date of Submission
2013-08-14
關鍵字
Keywords
分子束磊晶、稀磁性半導體、氮化鎵摻雜錳、氮化鎵、奈米柱
GaN, Diluted Magnetic Semiconductors, Mn:GaN, Molecular Beam Epitaxy, Nanorods
統計
Statistics
本論文已被瀏覽 5712 次,被下載 49
The thesis/dissertation has been browsed 5712 times, has been downloaded 49 times.
中文摘要
本研究利用氮電漿輔助分子束磊晶(PAMBE)系統合成稀磁性半導體奈米柱材料於n型矽(111)基板上,藉由脈衝摻雜技術將錳元素摻雜至氮化鎵奈米柱。稀磁性半導體材料的發展以及合成過程中避免次要相的形成是一項重要的課題,因此,一維結構的磊晶方法在本研究中被採用,藉此提高晶體品質以及壓制錳相關次要相的形成。氮化鎵摻雜錳奈米柱利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、能量散佈光譜儀(EDX)、高解析X射線繞射(HRXRD)系統、拉曼(Raman)光譜儀、超導量子干涉儀(SQUID)、及電流-電壓(I-V)特性分析等量測分析其材料特性。
氮化鎵摻雜錳奈米柱可藉由高解析X射線繞射(HRXRD)系統及穿透式電子顯微鏡(TEM)證明其晶體成長方向乃沿著hexagonal wurtzite晶體結構的c軸方向成長,並藉由能量散佈光譜儀(EDX)量測樣品的錳含量,而拉曼(Raman)散射光譜的實驗數據支持錳離子成功取代氮化鎵hexagonal wurtzite結構晶格中鎵的位置,並且經由高解析X射線繞射(HRXRD)系統及穿透式電子顯微鏡(TEM)繞射圖檢測證明奈米柱中無形成明顯的錳相關次要相,在此前提之下,超導量子干涉儀(SQUID)的M-H量測在高於室溫的條件下呈現一磁滯曲線,證明氮化鎵摻雜錳奈米柱具有室溫鐵磁性的可能性。
Abstract
Plasma-assisted molecular beam epitaxy (PAMBE) synthesized diluted magnetic semiconductors nanorods on n-type Si (111) substrates are investigated in this report. Mn atoms are doped into GaN nanorods by using delta-doping methods. A challenging issue in the development of DMSs is the possibility of secondary phase induced ferromagnetism. Therefore, the method of one dimensional nanorod growth is adopted for improving the crystal quality and suppressing the formations of secondary phase. The Mn:GaN nanorods are characterized and analyzed by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray spectrometer (EDX), high-resolution X-ray diffraction system (HRXRD), Raman scattering system, superconducting quantum interference device (SQUID), and current-voltage (I-V) characterization.
The Mn:GaN nanorods grown along the c-axis of hexagonal wurtzite structure are confirmed by TEM and HRXRD. The concentration of Mn in GaN nanorods is determined by EDX, and the results of Raman scattering spectrum support that Mn atoms substitutes Ga sites of GaN hexagonal structure. There are no observable formations of secondary phase containing in Mn:GaN nanorods which are examined by HRXRD, and TEM diffraction patterns. The possibility of ferromagnetic behavior at room temperature in Mn:GaN nanorods is judged by magnetization-magnetic field (M-H) measurement of SQUID showing a hysteresis loop. More details will be discussed.
目次 Table of Contents
論文審定書 i
摘要 ii
圖目錄 vi
表目錄 xiv
緒論 1
1.1 介紹 1
1.2 文獻回顧 5
1.3 研究動機 16
第二章 實驗 24
2.1 分子束磊晶(MBE)成長技術[1][2] 24
2.2 分子束磊晶(MBE)系統成長氮化鎵脈衝摻雜錳奈米柱 29
第三章 分析技術 33
3.1 電子顯微術 (Electron Microscopy) 33
3.1.1 掃描式電子顯微術 (Scanning Electron Microscopy) 33
3.1.2 穿透式電子顯微術 (Transmission Electron Microscopy) 40
3.2 能量散佈X光光譜學 (Energy Dispersive X-ray Spectroscopy, EDX) 41
3.3 高解析X光繞射 (High-resolution X-ray Diffraction, HRXRD) 43
3.4 螢光光譜學 (Luminescence Spectroscopy) 46
3.4.1 光致螢光 (Photoluminescence, PL) 48
3.4.2 陰極螢光 (Cathodoluminescence, CL) 51
3.5 拉曼光譜學 (Raman Spectroscopy) 55
3.6 超導量子干涉儀 (Superconducting Quantum Interference Device Magnetometer, SQUID Magnetometer) 58
3.7 電流-電壓特性 (I-V Characterization) 60
第四章 改變夾層中GaN之磊晶時間 62
4.1 掃描式電子顯微鏡 (Scanning Electron Microscope) 影像 62
4.2 高解析X光繞射 (High-resolution X-ray Diffraction, HRXRD) 光譜 68
4.3 能量散佈X光光譜 (Energy Dispersive X-ray Spectrum, EDX) 71
4.4 穿透式電子顯微鏡 (Transmission Electron Microscope, TEM) 影像 84
4.5 陰極螢光(CL)以及光致螢光(PL)光譜 90
4.6 拉曼散射光譜 (Raman Scattering Spectrum) 98
4.7 超導量子干涉儀 (SQUID) 量測分析 101
第五章 改變夾層中Mn分子束通量 111
5.1 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM) 影像 111
5.2 能量散佈X光光譜 (Energy Dispersive X-ray Spectrum, EDX) 116
5.3 高解析X光繞射 (High-resolution X-ray Diffraction, HRXRD) 光譜 124
5.4 拉曼散射光譜 (Raman Scattering Spectrum) 126
5.5 超導量子干涉儀 (SQUID) 量測分析 129
參考資料 132
第六章 結論 134
附錄 (M0607系列樣品TEM影像) 135
參考文獻 References
[1] D. D. Awschalom, D. Loss, N. Samarth: Semiconductor Spintronics and Quantum Computation. (Springer-Verlag, Berlin, Heidelberg, New York, 2002) in Preface, p. 1.
[2] 夏建白, 葛惟昆, 常凯: 半導體自旋電子學. (科學出版社, 2008) p. 1
[3] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, and F. Petroff, “Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Snperlattices,” PHYSICAL REVIEW LETTERS, VOL. 61, NO. 21, 2472-2475, (1988).
[4] S. A. Wolf, D. D. Awschalom, R.A. Buhrman et al., “Spintronics: A Spin-Based Electronics Vision for the Future,” SCIENCE, VOL. 294, 1488-1495, (2001).
[5] Johan Åkerman, “Toward a Universal Memory,” SCIENCE, VOL. 308, 508-510, (2005).
[6] 施敏: 半導體元件物理與製作技術(第二版). (國立交通大學出版社 2002) p. 23, 78, 207, 436, 450.
[7] V. Avrutin et al., “Ferromagnetism in ZnO- and GaN-Based Diluted Magnetic Semiconductors,” Proceedings of the IEEE, VOL. 98, NO. 7, 1288-1301, (2010).
[8] M. Venkatesan, C. B. Fitzgerald, J. G. Lunney, and J. M. D. Coey, “Anisotropic Ferromagnetism in Substituted Zinc Oxide,” PHYSICAL REVIEW LETTERS, VOL. 93, NO. 17, 177206-1 - 177206-4, (2004).
[9] J. S. Lee, J. D. Lim, Z. G. Khim, Y. D. Park, S. J. Pearton, and S. N. G. Chu, “Magnetic and structural properties of Co, Cr, V ion-implanted GaN,” J. Appl. Phys., VOL. 93, NO. 8, 4512–4516, (2003).
[10] S. Kimura, S. Emura, Y. Yamauchi, Y. K. Zhou, S. Hasegawa, and H. Asahi, “Low temperature molecular beam epitaxy growth of cubic GaCrN,” J. Cryst. Growth, VOL. 310, NO. 1, 40–46, (2008).
[11] M. Strassburg, M. H. Kane, A. Asghar, Q. Song, Z. J. Zhang, J. Senawiratne, M. Alevli, N. Dietz, C. J. Summers, and I. T. Ferguson, “The Fermi level dependence of the optical and magnetic properties of Ga1-xMnxN grown by metal-organic chemical vapour deposition,” J. Phys., Condens. Matter, VOL. 18, NO. 9, 2615–2622, (2006).
[12] G. Talut, H. Reuther, S. Zhou, K. Potzger, F. Eichhorn, and F. Stromberg, “Ferromagnetism in GaN induced by Fe ion implantation,” J. Appl. Phys., VOL. 102, NO. 8, 083909-1 - 083909-7, (2007).
[13] W. Kim, H. J. Kang, S. K. Oh, S. Shin, J. H. Lee, J. Song, S. K. Noh, S. J. Oh, and C. S. Kim, “Magnetic and structural properties of Co ion-implanted GaN,” IEEE Trans. Nanotechnol., VOL. 5, NO. 2, 149–151, (2006).
[14] R. T. Huang, C. F. Hsu, J. J. Kai, F. R. Chen, and T. S. Chin, “Room-temperature diluted magnetic semiconductors p-(Ga,Ni)N,” Appl. Phys. Lett., VOL. 87, NO. 20, 202507-1 - 202507-3, (2005).
[15] D. L. Hou, X. J. Ye, H. J. Meng, H. J. Zhou, X. L. Li, C. M. Zhen, and G. D. Tang, “Magnetic properties of n-type Cu-doped ZnO thin films,” Appl. Phys. Lett., VOL. 90, NO. 14, 142502-1 - 142502-3, (2007).
[16] S. Dhar, O. Brandt, M. Ramsteiner, V. E. Sapega, and K. H. Ploog, “Colossal magnetic moment of Gd in GaN,” Phys. Rev. Lett., VOL. 94, NO. 3, 037205-1 - 037205-4, (2005).
[17] T. KASUYA, A. YANASE, “Anomalous Transport Phenomena in Eu-Chalcogenide Alloys,” REVIEWS OF MODERN PHYSICS, VOL. 4O, NO. 4, 684-696, (1968).
[18] H. Ohno, H. Munekata, T. Penney, S. von Molnar, and L. L. Chang, “Magnetotransport Properties of p-Type (In,Mn)As Diluted Magnetic III-V Semiconductors”, PHYSICAL REVIEW LETTERS, VOL. 68, NO. 17, 2664-2667, (1992).
[19] H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. Iye, “(Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs,” Appl. Phys. Lett. 69, 363, (1996).
[20] 胡裕民, 物理雙月刊, 二十六卷四期, (2004).
[21] J. K. Furdyna, “Diluted magnetic semiconductors,” J. Appl. Phy., VOL. 64, NO. 4, R29-R64, (1988).
[22] A. Haury, A. Wasiela et al., “Observation of a Ferromagnetic Transition Induced by Two-Dimensional Hole Gas in Modulation-Doped CdMnTe Quantum Wells,” PHYSICAL REVIEW LETTERS, VOL. 79, NO. 3, 511-514, (1997).
[23] D. Ferrand, J. Cibert et al., “Carrier-induced ferromagnetic interactions in p-doped Zn(1-x)MnxTe epilayers,” Journal of Crystal Growth, VOL. 214/215, 387-390, (2000).
[24] H. Munekata, H. Ohno et al., “Diluted Magnetic III-V Semiconductors,” PHYSICAL REVIEW LETTERS, VOL. 63, NO. 17, 1849-1852, (1989).
[25] Hideo Ohno, “Properties of ferromagnetic III-V semiconductors,” Journal of Magnetism and Magnetic Materials, VOL. 200, 110-129, (1999).
[26] H. Munekata, H. Ohno, S. von Molnar, Alex Harwit, Armin Segmüller et al., “Epitaxy of III–V diluted magnetic semiconductor materials,” J. Vac. Sci. Technol. B, VOL. 8, NO. 2, 176-180, (1990).
[27] F. Matsukura, H. Ohno, A. Shen, and Y. Sugawara, “Transport properties and origin of ferromagnetism in„(Ga,Mn)As,” PHYSICAL REVIEW B, VOL. 57, NO. 4, R2037-R2040, (1998).
[28] A. Shen, H. Ohno, F. Matsukura, Y. Sugawara, N. Akiba, T. Kuroiwa, A. Oiwa, A. Endo, S. Katsumoto, Y. Iye, “Epitaxy of (Ga, Mn)As, a new diluted magnetic semiconductor based on GaAs,” Journal of Crystal Growth, VOL. 175-176, 1069-1074, (1997).
[29] K. Sato, P. H. Dederichsa, H. Katayama-Yoshida, J. Kudrnovsky, “Magnetic impurities and materials design for semiconductor spintronics,” Physica B: Condensed Matter, VOL. 340-342, 863–869, (2003).
[30] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, D. Ferrand, “Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors,” SCIENCE, VOL. 287, NO. 5455, 1019-1022, (2000).
[31] Y. C. Yang, C. F. Zhong, X. H. Wang, B. He, S. Q. Wei et al., “Room temperature multiferroic behavior of Cr-doped ZnO films,” J. Appl. Phys., VOL. 104, NO. 6, 064102-1 - 064102-4, (2008).
[32] Hiromasa Saeki, Hitoshi Tabata, Tomoji Kawai, “Magnetic and electric properties of vanadium doped ZnO films,” Solid State Commun., VOL. 120, NO. 11, 439-443, (2001).
[33] N. Theodoropoulou, V. Misra, J. Philip, P. LeClair, G. P. Berera, J. S. Moodera, B. Satpati, and T. Som, “High-temperature ferromagnetism in Zn1-xMnxO semiconductor thin films,” J. Magn. Magn. Mater., VOL. 300, NO. 2, 407–411, (2006).
[34] C. Song, K. W. Geng, F. Zeng, X. B. Wang, Y. X. Shen, F. Pan, Y. N. Xie, T. Liu, H. T. Zhou, and Z. Fan, “Giant magnetic moment in an anomalous ferromagnetic insulator: Co-doped ZnO,” Phys. Rev. B, Condens. Matter, VOL. 73, NO. 2, 024405-1 - 024405-6, (2006).
[35] X. Liu, F. Lin, L. Sun, W. Cheng, X. Ma, and W. Shi, “Doping concentration dependence of room-temperature ferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laser deposition,” Appl. Phys. Lett., VOL. 88, NO. 6, 062508-1 - 062508-3, (2006).
[36] X. X. Wei, C. Song, K. W. Geng, F. Zeng, B. He, and F. Pan, “Local Fe structure and ferromagnetism in Fe-doped ZnO films,” J. Phys., Condens. Matter, VOL. 18, NO. 31, 7471–7479, (2006).
[37] M. L. Reed, N. A. El-Masry, H. H. Stadelmaier, M. K. Ritums, M. J. Reed et al., “Room temperature ferromagnetic properties of (Ga, Mn)N,” Appl. Phys. Lett., VOL. 79, NO. 21, 3473-3475, (2001).
[38] Takahiko Sasaki, Saki Sonoda, Yoshiyuki Yamamoto, Ken-ichi Suga, Saburo Shimizu et al., “Magnetic and transport characteristics on high Curie temperature ferromagnet of Mn-doped GaN,” J. Appl. Phys., VOL. 91, NO. 10, 7911-7913, (2002).
[39] S. Dhar, T. Kammermeier, A. Ney, L. Pe´rez, K. H. Ploog, A. Melnikov, and A. D. Wieck, “Ferromagnetism and colossal magnetic moment in Gd-focused ion-beam-implanted GaN,” Appl. Phys. Lett., VOL. 89, NO. 6, 062503-1 - 062503-3, (2006).
[40] M. H. Kane, M. Strassburg, W. E. Fenwick, A. Asghar, A. M. Payne, S. Gupta, Q. Song, Z. J. Zhang, N. Dietz, C. J. Summers, and I. T. Ferguson, “Correlation of the structural and ferromagnetic properties of Ga1-xMnxN grown by metalorganic chemical vapor deposition,” J. Cryst. Growth, VOL. 287, NO. 2, 591–595, (2006).
[41] L. S. Dorneles, D. O’Mahony, C. B. Fitzgerald, F. McGee, M. Venkatesan, I. Stanca, J. G. Lunney, and J. M. D. Coey, “Structural and compositional analysis of transition-metal-doped ZnO and GaN PLD thin films,” Appl. Surf. Sci., VOL. 248, NO. 1-4, 406-410, (2005).
[42] M. Zajac, J. Gosk, E. Grzanka, S. Stelmakh, M. Palczewska, A. Wysmoaek, K. Korona, M. Kaminska, and A. Twardowski, “Ammonothermal synthesis of GaN doped with transition metal ions (Mn, Fe, Cr),” J. Alloys Compounds, VOL. 456, NO. 1-2, 324–338, (2008).
[43] K. Sato and H. Katayama-Yoshida, “First principles materials design for semiconductor spintronics,” Semicond. Sci. Technol., VOL. 17, NO. 4, 367-376, (2002).
[44] Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno & D. D. Awschalom, “Electrical spin injection in a ferromagnetic semiconductor heterostructure,” NATURE, VOL. 402, 790-792, (1999).
[45] H. Ohno, D. Chiba, F. Matsukura, T. Omiya, E. Abe, T. Dietl, Y. Ohno & K. Ohtani, “Electric-field control of ferromagnetism,” NATURE, VOL. 408, 944-946, (2000).
[46] Supriyo Datta and Biswajit Das, “Electronic analog of the electrooptic modulator,” Appl. Phys. Lett., VOL. 56, NO. 7, 665-667, (1990).
[47] M. Tanaka and Y. Higo, “Large Tunneling Magnetoresistance in GaMnAs/AlAs/GaMnAs Ferromagnetic Semiconductor Tunnel Junctions,” PHYSICAL REVIEW LETTERS, VOL. 87, NO. 2, 026602-1 - 026602-4, (2001).
[48] F. L. Deepak, P. V. Vanitha, A. Govindaraj, C. N. R. Rao, “Photoluminescence spectra and ferromagnetic properties of GaMnN nanowires,” Chemical Physics Letters, VOL. 374, NO. 3-4, 314-318, (2003).
[49] H. J. Choi1, H. K. Seong, J. Chang, K. I. Lee, Y. J. Park, J. J. Kim, S. K. Lee, R. He, T. Kuykendall, P. Yang, “Single-Crystalline Diluted Magnetic Semiconductor GaN:Mn Nanowires,” Advanced Materials, VOL. 17, NO. 11, 1351-1356, (2005).
[50] J. S. Kulkarni, O. Kazakova, J. D. Holmes, “Dilute magnetic semiconductor nanowires,” Appl. Phys. A, VOL. 85, NO. 3, 277-286, (2006).
[51] Pavle V. Radovanovic, Carl J. Barrelet, Silvija Gradecak, Fang Qian, and Charles M. Lieber, “General Synthesis of Manganese-Doped II-VI and III-V Semiconductor Nanowires,” Nano Lett., VOL. 5, NO. 7, (2005).
[52] A. Urban, J. Malindretos, M. Seibt, and A. Rizzi, “Structure and Elemental Distribution of (Ga,Mn)N Nanowires,” Nano Lett., VOL. 11, NO. 2, 398-401, (2011).
[53] L. W. Tu, C. L. Hsiao, T. W. Chi, and I. Lo, “Self-assembled vertical GaN nanorods grown by molecular-beam epitaxy,” Appl. Phys. Lett., VOL. 82, NO. 10, 1601-1603, (2003).
[54] I. M. Tiginyanu, V. V. Ursaki, V. V. Zalamai, S. Langa, S. Hubbard et al., “Luminescence of GaN nanocolumns obtained by photon-assisted anodic etching,” Appl. Phys. Lett., VOL. 83, NO. 8, 1551-1553, (2003).
[55] Y.S. Park et al., “Self-assembled GaN nano-rods grown directly on (1 1 1) Si substrates: Dependence on growth conditions,” Journal of Crystal Growth, VOL. 282, NO. 3-4, 313–319, (2005).
第二章 實驗
[1] M. A. Herman, H. Sitter: Molecular Beam Epitaxy Fundamentals and Current Status. (2nd Edition Springer-Verlag, Berlin, Heidelberg, New York, 2002), p.3 - p.6.
[2] P Frigeri, L Seravalli, G Trevisi, and S Franchi,” Molecular Beam Epitaxy: An Overview,” Comprehensive Semiconductor Science and Technology, VOL. 3, 480–522, (2011).
第三章 分析技術
[1] A. Serway, J. Moses, and A. Moyer: MODERN PHYSICS, 3rd edn. (Brooks/Cole Cengage Learning, USA, 2005), p154.
[2] Ting-Hong Chen, “Characterization and Growth of GaMnN Nanorods Grown by Plasma-Assisted Molecular Beam Epitaxy,” Department of Physics National Sun Yat-sen University Master Thesis, 10-14, (2012).
[3] http://www4.nau.edu/microanalysis/microprobe/Interact-Effects.html
[4] “3nm UHV SEM meets nanotechnology applications”, Omicron NanoTechnology GmbH.
[5] “Electron optics components”, Doctoral School, (2006).
[6] http://khvic.nsysu.edu.tw/khvic/JL/52.htm
[7] Sven A. E. Johansson, John L. Campbell, “A Novel Technique for Elemental Analysis,” ISBN: 0-471-92011-8, Hardcover, p360, (1988).
[8] Mark Fox: Optical Properties of Solids. (OXFORD UNIVERSITY PRESS, 2001), p98.
[9] 顏偉俊, “Strain effect of silicon doped indium nitride films grown by plasma-assisted molecular beam epitaxy,” Department of Physics National Sun Yat-sen University Master Thesis, 46, (2010).
[10] T. Kozawa, T. Kachi, H. Kano, Y. Taga, and M. Hashimoto, “Raman scattering from LO phonon-plasmon coupled modes in gallium nitride,” J. Appl. Phys., VOL. 75, NO. 2, 1098-1101, (1994).
[11] “INCA Energy Operator Manual,” NO. 2.1, (2006).
[12] 楊鴻昌, “最敏感的感測元件SQUID及其前瞻性應用,” 物理雙月刊(廿四卷五期), 652-665, (2002).
第四章 改變夾層中GaN之磊晶時間
第五章 改變夾層中Mn分子束通量
[1] O. Gelhausen, E. Malguth, and M. R. Phillips, “Doping-level-dependent optical properties of GaN:Mn,” APPLIED PHYSICS LETTERS, VOL. 84, NO. 22, 4514-4516, (2004).
[2] A. Y. Polyakov, A. V. Govorkov, N. B. Smirnov, N. Y. Pashkova, G. T. Thaler et al., “Optical and electrical properties of GaMnN films grown by molecular-beam epitaxy,” JOURNAL OF APPLIED PHYSICS, VOL. 92, NO. 9, 4989-4993, (2002).
[3] O. Gelhausen, M. R. Phillips, and M. Toth, “Depth-resolved cathodoluminescence microanalysis of near-edge emission in III-nitride thin films,” JOURNAL OF APPLIED PHYSICS, VOL. 89, NO. 6, 3535-3537, (2001).
[4] T. Kozawa, T. Kachi, H. Kano, Y. Taga, and M. Hashimoto, “Raman scattering from LO phonon-plasmon coupled modes in gallium nitride,” J. Appl. Phys., VOL. 75, NO. 2, 1098-1101, (1994).
[5] X. G. Cui, Z. K. Tao, R. Zhang, X. Li, X. Q. Xiu et al., “Structural and magnetic properties in Mn-doped GaN grown by metal organic chemical vapor deposition,” APPLIED PHYSICS LETTERS, VOL. 92, 152116-1 - 152116-3, (2008).
[6] M. Zajac, R. Doradziński, J. Gosk, J. Szczytko, M. Lefeld-Sosnowska et al., “Magnetic and optical properties of GaMnN magnetic semiconductor,” APPLIED PHYSICS LETTERS, VOL. 78, NO. 9, 1276-1278, (2001).
[7] W. Gebicki, J. Strzeszewski, G. Kamler, T. Szyszko, and S. Podsiadło, “Raman scattering study of Ga1−xMnxN crystals,” APPLIED PHYSICS LETTERS, VOL. 76, NO. 26, 3870-3872, (2000).
[8] X.Q. Xiu, R. Zhang, B.B. Li, Z.L. Xie, L. Chen, B. Liu, P. Han, S.L. Gu, Y. Shi, Y.D. Zheng, “Study of structures and magnetic properties of single crystalline HVPE–GaMnN films,” Journal of Crystal Growth, VOL. 292, NO. 2, 212-215, (2006).
[9] H. Harima, “Raman studies on spintronics materials based on wide bandgap semiconductors,” J. Phys.: Condens. Matter, VOL. 16, NO. 48, S5653-S5660, (2004).
[10] M. Asghar, I. Hussain, E. Bustarret, J. Cibert, S. Kuroda, S. Marcet, H. Mariette, “Study of lattice properties of Ga1-x Mnx N epilayers grown by plasmaassisted molecular beam epitaxy by means of optical techniques,” Journal of Crystal Growth, VOL. 296, NO. 2, 174-178, (2006).
[11] CUI Xu-Gao, ZHANG Rong, TAO Zhi-Kuo, LI Xin, XIU Xiang-Qian, XIE Zi-Li, ZHENG You-Dou, “Optical and Structural Properties of Mn-Doped GaN Grown by Metal Organic Chemical Vapour Deposition,” CHIN. PHYS. LETT., VOL. 26, NO. 3, 038103-1 - 038103-4, (2009).
[12] Ching-Lien Hsiao, Li-Wei Tu, Tung-Wei Chi, Min Chen, Tai-Fa Young et al., “Micro-Raman spectroscopy of a single freestanding GaN nanorod grown by molecular beam epitaxy,” APPLIED PHYSICS LETTERS, VOL. 90, NO. 4, 043102-1 - 043102-3, (2007).
[13] A. G. Milekhin, R. Meijers, T. Richter, R. Calarco, H. Lüth, B. A. Paez Sierra, and D. R. T. Zahn, “Surface enhanced Raman scattering by GaN nanocolumns,” Phys. Stat. Sol. (c), VOL. 3, NO. 6, 2065-2068, (2006).
[14] Alexander G. Milekhin, Larisa L. Sveshnikova, Tatyana A. Duda, Nikolay V. Surovtsev, Sergey V. Adichtchev, Zhe Chuang Feng, Dietrich R. T. Zahn, “Surface-Enhanced Raman Scattering by GaN and ZnO Nanostructures,” XI INTERNATIONAL CONFERENCE AND SEMINAR EDM'2010, SECTION I, JUNE 30 - JUL Y 4, ERLAGOL.
[15] NCKU Micro--Nano Technology Center/Southern Region MEMS Center, 反應式離子蝕刻機 RIE SOP.
[16] H. J. Choi, H. K. Seong, J. Chang, K. I. Lee, Y. J. Park, J. J. Kim, S. K. Lee, R. He, T. Kuykendall, P. Yang, “Single-Crystalline Diluted Magnetic Semiconductor GaN:Mn Nanowires,” Advanced Materials, VOL. 17, NO. 11, 1351-1356, (2005).
[17] K. H. Kim, K. J. Lee, J. B. Park, D. J. Kim, H. Kim and Y. E. Ihm, “GaMnN Thin Films Grown on Sapphire and GaAs Substrates Using Single GaN Precursor Via Molecular Beam Epitaxy,” Journal of the Korean Physical Society, VOL. 42, S399-S402, (2003).
[18] Y. Y. Yu, R. Zhang, X. Q. Xiu, Z. L. Xie, H. Q. Yu, Y. Shi, B. Shen, S. L. Gu, Y. D. Zheng, “Preparation GaxMn1-xN DMS materials using HVPE method,” Journal of Crystal Growth, VOL. 269, 270-275, (2004).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code