Responsive image
博碩士論文 etd-0712113-102028 詳細資訊
Title page for etd-0712113-102028
論文名稱
Title
利用硫化鋅不含鎘且具寬能隙磷化銦鎵輔助層之銅銦鎵硒太陽能電池
A Cd-free and ZnS based CIGS Solar Cell with a Wide-Bandgap InGaP Secondary Layer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-18
繳交日期
Date of Submission
2013-08-16
關鍵字
Keywords
輔助層、磷化銦鎵、類並聯、銅銦鎵硒、硫化鋅
ZnS, InGaP, Back-to-Back parallel, Secondary Layer, CIGS
統計
Statistics
本論文已被瀏覽 5716 次,被下載 82
The thesis/dissertation has been browsed 5716 times, has been downloaded 82 times.
中文摘要
本論文中,我們提出兩種架構為利用硫化鋅不含鎘且具寬能隙磷化銦鎵輔助層之銅銦鎵硒太陽能電池和類並聯式的太陽能電池。太陽能電池架構中,在硫化鋅緩衝層與銅銦鎵硒吸收層之間添加輔助層磷化銦鎵,其架構為從傳統氧化鋅/硫化鋅/銅銦鎵硒/鉬改變為氧化鋅/硫化鋅/磷化銦鎵/銅銦鎵硒/鉬。經由模擬結果顯示,藉由添加一寬能隙磷化銦鎵材料,使得開路電壓相比於未添加此材料時可改善2.47倍,同時轉換效率也提升約10 %。為了彌補電流密度的下降,我們藉由類並聯式架構使電流密度獲得提升33 %並且轉換效率提升34 %。
另外類並聯式的太陽能電池方面,將兩個架構相同的太陽能電池,藉由背對背共用背電極,形成上電極/太陽能電池/背電極/太陽能電池/上電極之類並聯形式。我們分別對單晶矽、具磷化鎵之單晶矽、非晶矽、砷化鎵、堆疊砷化鎵、銅銦鎵硒、具磷化銦鎵之銅銦鎵硒、碲化鎘材料的太陽能電池,進行類並聯的模擬。經由模擬結果顯示,單一面積以及單面照光於類並聯太陽能電池,相比於未類並聯時擁有較大的電流密度,進而使轉換效率獲得提升。
Abstract
In this thesis, we propose two solar cell structures. One is the Cd-free and ZnS based CIGS solar cell with a wide-bandgap InGaP secondary layer, and the other is back-to-back parallel solar cell. We add an InGaP secondary layer between the ZnS buffer layer and CIGS absorber layer in the conventional ZnO/ZnS/CIGS/Mo structure. According to the simulation, the voltage can be improved 2.47 times by using a wide-bandgap InGaP material. Also, the conversion efficiency has been increased about 10 %. In order to make up reduction of the current density, we use the back-to-back parallel structure to improve the current density to 33 % and the conversion efficiency can be ameliorated 34 %.
In addition, we connect the back electrodes of the same two solar cells to form back-to-back parallel solar cell. The back-to-back parallel solar cell is constituted by upper electrode/solar cell/back electrode/solar cell/upper electrode. We discuss many of materials to form back-to-back parallel solar cell, such as Si, GaP/Si, a-Si, GaAs, tandem GaAs, CdTe, CIGS, CIGS with InGaP. The simulation results show that the current density can be increased due to the use of back-to-back parallel form. Therefore, the conversion efficiency also can be improved.
目次 Table of Contents
第一章、緒論 1
1.1 背景 1
1.2 研究動機 4
第二章、具輔助層銅銦鎵硒太陽能電池 6
2.1元件模擬之物理模型 6
2.2 傳統架構與具輔助層之比較 7
2.2.1 傳統架構緩衝層硫化鎘與硫化鋅 7
2.2.2 傳統架構與輔助層 8
2.2.3 傳統架構與磷化銦鎵輔助層 11
2.3 硫化鋅為緩衝層之銅銦鎵硒太陽能電池製程步驟 22
2.4 磷化銦鎵為輔助層之銅銦鎵硒太陽能電池製程步驟 23
第三章、類並聯式太陽能電池 25
3.1 矽太陽能電池 25
3.1.1 傳統單晶矽與類並聯太陽能電池 25
3.1.2 傳統非晶矽與類並聯太陽能電池 27
3.1.3 具磷化鎵之單晶矽與類並聯太陽能電池 29
3.2 砷化鎵太陽能電池 31
3.2.1 傳統砷化鎵與類並聯太陽能電池 31
3.2.2 堆疊砷化鎵與類並聯太陽能電池 33
3.3 碲化鎘太陽能電池 36
3.3.1 碲化鎘與類並聯太陽能電池 36
3.4 銅銦鎵硒太陽能電池 38
3.4.1 傳統銅銦鎵硒太陽能電池 38
3.4.2 具磷化銦鎵銅銦鎵硒與類並聯太陽能電池 40
3.5 類並聯太陽能電池單雙面照光之比較 42
3.6 單晶矽種類的類並聯比較 50
3.7 並聯式太陽能電池製作 56
第四章、結論與未來展望 60
4.1 結論 60
4.2 未來展望 61
參考文獻 62
A附錄、太陽能電池物理機制與理論 67
光電於半導體 67
能帶中光的行 68
太陽光譜 70
太陽能電池的操作理論 71
太陽能電池的電性參數 72
短路電流 73
開路電壓 74
填充因子 74
轉換效率 75
光學特性探討 76
外部量子效率 77
內部量子效率 77
太陽能電池的效率損失及提升 78
銅銦鎵硒太陽能電池介紹 79
抗反射層與透明導電膜 80
緩衝層 80
吸收層 80
背電極與基板 82
輔助吸收層 83
B附錄、個人著作 84
參考文獻 References
[1] 林明獻著,太陽電池技術入門,全華圖書,2008。
[2] 翁敏航著,太陽能電池,東華書局,2010。
[3] I. L. Repins, D. C. Fisher, M. E. Beck, and J. S. Britt, “Effect of maximum Cu ratio during three-stage CIGS growth documented by design of experiment,” in Proc. IEEE Photovoltaic Spec. Conf., 2005, pp. 311-314.
[4] A. J. Hall, D. Hebert, C. Lei, and A. Rockett, “Epitaxial growth of very large grain bicrystalline Cu(In,Ga)Se2 thin films by a hybrid sputtering method,” Jpn. J. Appl. Phys., vol. 103, no. 8, pp. 083540-083540-7, 2008.
[5] J. Song, T. J. Anderson, and S. S. Li, “Material parameter sensitivity study on CIGS solar cell performance,” in Proc. IEEE Photovoltaic Spec. Conf., 2008, pp. 1-4.
[6] T. P. Hsieh, C. C. Chuang, C. S. Wu, J. C. Chang, J. W. Guo, and W. C. Chen, “Effects of residual copper selenide on CuInGaSe2 solar cells,” in Proc. IEEE Photovoltaic Spec. Conf., pp. 000052-000054, 2009.
[7] S. Ahn, K. H. Kim, J. H. Yun, and K. H. Yoon, “Effects of selenization conditions on densification of Cu(In,Ga)Se2 (CIGS) thin films prepared by spray deposition of CIGS nanoparticles,” J. Appl. Phys., vol. 105, no. 11, pp. 113533-113533-7, 2009.
[8] G. Mount, T. Buyuklimanli, R. Michel, J. Moskito, S. Robie, U. Sharma, and L. Wang, “Investigation of differences between high and low efficiency CIGS solar cell structures using surface analytical techniques,” in Proc. IEEE Photovoltaic Spec. Conf., 2010, pp. 3466-3471.
[9] Y. Liu and D. Kong, “Preparation of Cu(In,Ga)Se2 Thin Film by Non-Vacuum Mechanochemical and Spin-Coating Process,” in Proc. Asia-Pacific Pow. Energy Eng. Conf., 2011, pp. 1-4.
[10] C. H. Huang, S. S. Li, L. Rieth, A. Halani, M. L. Fisher, J. Song, T. J. Anderson, and P. H. Holloway, “A comparative study of chemical-bath-deposited CdS, (Cd,Zn)S, ZnS, and In(OH)xSy buffer layer for CIGS-based solar cells,” in Proc. IEEE Photovoltaic Spec. Conf., 2000, pp. 696-699.
[11] G. Gordillo, C. Calderon, and C. Quinonez, “CIGS thin film solar cells with InSe buffer layer,” in Proc. World Conf. Photovoltaic Energy Conversion, 2003, pp. 483-486.
[12] K. Matsubara, A. Yamada, S. Ishizuka, K. Sakurai, H. Tampo, M. Yonemura, S. Nakamura, and H.Nakanishi, “Cd-Free Wide Gap CuIn1-xGaxSe2 Solar Cells using Zn1-yMgyO Deposited by Pulsed Laser Deposition,” in Proc. IEEE World Conf. Photovoltaic Energy Conversion, 2006, pp. 571-574.
[13] M. M. Islam, S. Ishizuka, A. Yamada, K. Sakurai, S. Niki, T. Sakurai, and K. Akimoto, “CIGS solar cell with MBE-grown ZnS buffer layer,” Sol. Energ. Mater. Sol. Cells, vol. 93, no. 6-7, pp. 970-972, 2009.
[14] D. Hariskos, S. Spiering, and M. Powalla, “Buffer layers in Cu(In,Ga)Se2 solar cells and modules,” in Proc. Symp. O on Thin Film Chal. Photovoltaic Mater. EMRS Conf., 2004, pp. 99-109.
[15] T. Nakada, K. Furumi, and A. kunioka, “High-Efficiency Cadmium-Free Cu(In,Ga)Se2 Thin-Film Solar Cells with Chemically Deposited ZnS Buffer Layers,” IEEE Trans. Electron Devices., vol. 46, pp. 2093-2097, 1999.
[16] T. Nakada, M. Mizutani, Y. Hagiwara, and A. Kunioka, “High-efficiency Cu(In,Ga)Se2 thin-film solar cells with a CBD-ZnS buffer layer,” Sol. Energ. Mater. Sol. Cells, vol. 67, no. 1-4, pp. 255-260, 2001.
[17] W. Witte, D. Hariskos, and M. Powalla, “Comparison of charge distribution in CIGS thin-film solar cells with ZnS/(Zn,Mg)O and CdS/i-ZnO buffers,” Thin Solid Films, vol. 519, no. 21, pp. 7549-7552, 2011.
[18] C. Y. Chien, C. H. Chen, C. P. Tsai, J. M. Shieh, Y. J. Hsiao, and C. H. Lai, “Performance improvement of CIGS solar cells with CBD-ZnS buffer layers by light soaking and rapid thermal annealing,” in Proc. IEEE Photovoltaic Spec. Conf., 2011, pp. 001255-001258.
[19] T. Nakada, T. Kumazawa, H. Yamaguchi, and T. Kobayashi, “Impact of post-treatments on cell performance of CIGS solar cells with Zn-compound buffer layers,” IEEE J. Photovoltaics, vol. 3, no. 1, pp. 461-466, 2013.
[20] W. T. Hsu, C. C. Chiang, T. Y. Chuang, L. T. Cheng, L. P. Wang, S. W. Chan, K. Y. Lai, W. C. Chen, H. T. Cheng, J. C. Chang, Y. Y. Tsai, and S. Y. Tsai, “Flexible and Cd free CIGS solar cell yielding 13.37 % efficiency producing by non-vacuum process,” in Proc. IEEE Photovoltaic Spec. Conf., 2012, pp. 2034-2037.
[21] V. Haug, A. Quintilla, and E. Ahlswede, “CIGS solar cells with very thin absorber layers,” in Proc. IEEE Photovoltaic Spec. Conf., 2009, pp. 000763-000765.
[22] Y. D. Chung, D. H. Cho, W. S. Han, N. M. Park, K. S. Lee, S. Y. Oh, and J. Kim, “The thickness effect of SiOx layer in CIGS thin-film solar cells fabricated on stainless-steel substrate,” in Proc. IEEE Photovoltaic Spec. Conf., 2010, pp. 3401-3402.
[23] T. Nakada, S. Kijima, Y. Kuromiya, R. Arai, Y. Ishii, N. Kawamura, H. Ishizaki, and N. Yamada, “Chalcopyrite thin-film tandem solar cells with 1.5 V open-circuit-voltage,” in Proc. IEEE World Conf. Photovoltaic Energy Conversion, 2007, pp. 400-403.
[24] W. L. Wang, H. Lin, J. Zhang, X. Li, A. Yamada, M. Konagai, and B. J. Li, “Experimental and simulation analysis of the dye sensitized solar cell/Cu(In,Ga)Se2 solar cell tandem structure,” Sol. Energ. Mater. and Solar cells, vol. 94, no. 10, pp. 1753-1758, 2010.
[25] S. R. Huang, X. Lu, A. Barnett, and R. Opila, “Gallium phosphide epitaxial films for silicon based multi-junction solar cells grown by liquid phase epitaxy,” in Proc. IEEE Photovoltaic Spec. Conf., 2010, pp. 3343-3346.
[26] S. Honda, T. Yamazaki, M. Tsurukawa, H. Takakura, and Y. Hamakawa, “Wide Band GaP Buffer Effect for Amorphous Silicon Solar Cell Analyzed by Basrea Measurement,” in Proc. World Conf. Photovoltaic Energy Conversion, 2003, pp. 1729-1732.
[27] H. Matsubara, T. Tanabe, A. Saegusa, S. Takagishi, and T. Shirakawa, “GaAs solar cell with GaInP window grown by all metalorganic source MOVPE,” in Proc. World Conf. Photovoltaic Energy Conversion, 1994, pp. 1871-1873.
[28] T. Takamoto, E. Ikeda, H. Kurita, and M. Ohmori, “Over 30% efficient InGaP/GaAs tandem solar cells,” Appl. Phys. Lett., vol. 70, pp. 381–383, 1997.
[29] N. Amin , K. Sopian, and M. Konagai, “Numerical modeling of CdS/CdTe and CdS/CdTe/ZnTe solar cells as a function of CdTe thickness,” Sol. Energ. Mater. Sol. Cells, vol. 91, pp. 1202-1208, 2007.
[30] T. Nakada, M. Hongo, and E. Hayashi, “Band offset of high efficiency CBD-ZnS/CIGS thin film solar cells,” Thin Solid Films, vol. 431-432, pp. 242-248, 2003.
[31] 蔡進譯,超高效率太陽能電池-從愛因斯坦的光電效應談起,物理月刊,27卷5期,2005。
[32] W. Feng, D. Xiao, J. Ding, and Y. Yao, “Three-dimensional topological insulators in I-III-VI2 and II-IV-V2 chalcopyrite semiconductors,” Phys. Rev. Lett., vol. 106, no. 1, pp. 16402, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code