Responsive image
博碩士論文 etd-0712113-113112 詳細資訊
Title page for etd-0712113-113112
論文名稱
Title
新穎吲哚化合物調節乳癌細胞生長、侵犯及反轉上皮-間質轉化效果及機制之探討
Effects and mechanisms of novel indole compound on the regulation of breast cancer cell growth, invasion and the reversion of epithelial-to-mesenchymal transition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
128
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-15
繳交日期
Date of Submission
2013-08-12
關鍵字
Keywords
miRNA-200、Histone deacetylase (HDAC)、E-cadherin、ZEB1、apoptosis、3,3’-diindolylmethane、Indole-3-carbinol (I3C)、epithelial-mesenchymal transition (EMT)
epithelial-mesenchymal transition (EMT), miRNA-200, Histone deacetylase (HDAC), E-cadherin, ZEB1, apoptosis, 3,3’-diindolylmethane, Indole-3-carbinol (I3C)
統計
Statistics
本論文已被瀏覽 5738 次,被下載 398
The thesis/dissertation has been browsed 5738 times, has been downloaded 398 times.
中文摘要
乳癌在台灣是婦女死亡原因的第四名,同時也是全世界女性癌症死亡的主因,流行病學及飲食習慣的研究指出大量攝取十字花科的蔬菜可以防止癌症的發生。Indole-3-carbinol (I3C) 是一個食物中的天然化合物,存在於芸苔屬植物中,例如:甘藍菜、花椰菜及球芽甘藍。 Indole-3-carbinol以及它的代謝產物:3,3’-diindolylmethane藉由調控許多與細胞週期(cell cycle)及細胞存活(cell survival)有關的訊息傳導路徑例如:Akt-NFκB signaling, caspase activation, cycle-dependent kinase activities, estrogen receptor signaling, endoplasmic reticulum stress and BRCA gene expression等來抑制癌症的發生與生長。I3C及DIM在過去的報導中已被發現具有抑制癌細胞生長及誘導細胞週期停止在G1 phase的功能,但是其有效濃度仍然偏高(I3C: 100~200 μM;DIM: 30~60 μM),因此許多研究團隊正著力於合成更具效力的吲哚(Indole)衍生物。

本論文第一部份的研究,我們於一系列的吲哚衍生物中篩選出最具有抗癌活性的化合物。首先,我們採用MTT assay來測試衍生物於人類乳癌細胞的cytotoxicity(細胞毒性),在這一系列的衍生物當中,我們發現SK228其抑制癌細胞生長的效果最佳,IC50 (The half maximal inhibitory concentration)在MDA-MB-231及MCF7細胞中分別約為0.45與0.88 μM。其次,對於細胞週期的分析上發現SK228會誘使細胞週期停止於G2/M phase。除此之外,SK228也會誘導一些與細胞凋亡(apoptosis)有關的蛋白質表現,例如:調升bak, caspase-3 activation, PARP cleavage;調降bal-2,同時SK228也會引發genomic DNA的降解(degradation)。因此,我們的實驗結果指出SK228是一個具有潛力的化學治療藥物(chemotherapeutic agent)。

於第二部份的研究當中,我們將研究的重點放在探討SK228的抗癌機制。依據文獻的記載,I3C及DIM能夠調升E-cadherin的表現並且抑制癌細胞的移動(migration)、侵犯(invasion)及轉移(metastasis)的能力。E-cadherin的不表現是EMT的重要指標,因此我們假設SK228也具有相同的活性來反轉表皮-間質細胞轉型(epithelial-mesenchymal transition, EMT),我們的研究發現SK228能夠調升E-cadherin蛋白質及mRNA的表現量並且抑制乳癌細胞的移動(migration)及侵犯(invasion)的能力。除此之外,經由SK228處理後的乳癌細胞其外觀由fibroblastoid(纖維母細胞型態)轉變為cobblestone-like appearance(鵝卵石型態)。我們同時也分析了幾個EMT inducer,其中ZEB1、ZEB2、Slug以及Twist1的表現量會被SK228所調降。miRNA在近年來也被報導與EMT的調節有關,除此之外I3C與DIM亦被發現能夠調升miRNA-200 family來達到調控EMT的目的。在研究中,我們發現經由SK228處理過的乳癌細胞其miRNA-200 family,尤其是miR-200c會被大量提升並接著抑制ZEB1的表現。對於SK228如何調控miRNA-200c的表現,我們進行了表觀遺傳調控(epigenetic regulation)的分析,實驗結果發現在SK228處理過後的癌細胞中,其histone deacetylase (HDAC) 活性下降了約25%,而在miRNA-200c-targeting-specific promoter methylation的分析上,則只約有6%的抑制作用。總括而言,我們的研究證實了SK228能夠調升miRNA-200 family的表現,而抑制了ZEB1進而使得E-cadherin表現上升來達到抑制癌細胞轉移的目的。
Abstract
Breast cancer is the leading cause of death among Taiwanese women as well as women all over the world. Epidemiological and dietary studies have shown that high dietary intake of cruciferous vegetables protect against carcinogenesis. The dietary compound, indole-3-carbinol (I3C), is an autolysis product of glucosinolate, glucobrassicin, which is found in Brassica vegetables such as cabbage, broccoli and brussels sprouts. Indole-3-carbinol and its metabolite 3,3’-diindolylmethane target multiple aspects of cancer cell-cycle regulation and survival including Akt-NFκB signaling, caspase activation, cycle-dependent kinase activities, estrogen receptor signaling, endoplasmic reticulum stress and BRCA gene expression. The development of new and efficient synthetic methods to prepare indole derivatives continues to receive a lot attention in organic synthesis because of their biological activities. Various indole moieties occur in many pharmacologically and biologically active compounds. For instance, the simplest indole derivative such as indole-3-carbinol is a potential inhibitor of the growth of breast cancer and can induce the arrest of the cell cycle in G1 phase. 3, 3’-Diindoylmethane that derived from indole-3-carbinol by acid treatment, is also reported to possess the same activity. Therefore, several research groups are devoted their research towards the synthesis of various indole derivatives.

In the part I, we examined a series of tetraindole related derivatives to explore their cellular cytotoxicity for further development of new chemotherapeutic agents. First, the cytotoxicity was evaluated by MTT assay. The results indicated that a tetraindole derivative named SK228 has the best IC50 value at about 0.45 μM and 0.88 μM in MDA-MB-231 and MCF7 cells respectively. Second, the cell cycle was arrested in G2/M phase by SK228 treatment. Third, the SK228 induces the up-regulation of apoptosis-related proteins, such as bak, activated caspase-3, and cleaved PARP, and the down-regulation of bcl-2. Finally, the degradation of genomic DNA was also induced by SK228 treatment. Taken together; our results suggested the tetraindole derivative, SK228, is a potent chemotherapeutic agent.

In the part II, as I3C can induce the expression of E-cadherin and repress the cancer cells motility in vivo, we hypothesized that SK228 can induce the reversion of epithelial-mesenchymal transition (EMT) via the similar signaling pathway. First, we found that the cell-cell adhesion glycoprotein, E-cadherin, was up-regulated in both RNA and protein levels after SK228 treatment. Second, the in vitro migration and invasion activities of breast cancer cells were repressed by SK228. Moreover, the cell morphology was changed from fibroblastoid to epithelial cobblestone-like appearance after incubated with SK228. Several EMT-inducing transcription factors and E-cadherin transcriptional repressors such as Twist1, ZEB1 (δEF1), ZEB2 (SIP1) and Slug (Snail2) were also down-regulated by SK228. Moreover, we also found SK228 can up-regulate the expression of miRNA-200 family (especially miR-200c) by possibly inhibiting HDAC (histone deacetylase) activities. Our study suggested that SK228 can regulate the miR-200/ZEB1/E-cadherin pathway to reverse the epithelial-mesenchymal transition. However, the detail mechanisms which involved in the regulation of miRNA by SK228 still need to be addressed.
目次 Table of Contents
摘要 xi
Abstract xiii
Part I Evaluate the effects of SK228 on cell proliferation, cell cycle regulation and induction of apoptosis in human breast cancer cells 1
Introduction 2
Materials and methods 4
1. Cell culture: 4
2. Cell viability analysis: 4
3. Trypan blue dye exclusion assay: 5
4. Flow cytometry analysis: 5
5. Apoptosis detection by annexin V-FITV/propidium iodide binding assay: 6
6. Determination of the apoptotic DNA ladder 6
7. Protein extraction and Western blot analysis: 6
Results and discussion 8
1. Growth inhibition of tetraindoles against human cancer cells. 8
2. SK228 induces G2/M phase arrest in human breast cancer cells. 9
3. SK228 induces apoptosis in human breast cancer cells. 10
Part II Investigate the effects of SK228 on migration, invasion and EMT regulation in human breast cancer cell lines 42
Introduction 43
Materials and methods 45
1. Cell culture: 45
2. Cell viability analysis: 45
3. Protein extraction and Western blot analysis: 46
4. RNA isolation: 47
5. Reverse transcription-PCR: 47
6. miRNA real-time reverse transcription-PCR: 48
7. Migration assay: 48
8. Invasion assay: 49
9. Immunofluorescence staining: 49
10. Transfection: 49
11. HDAC assay: 50
12. DNA methylation analysis: 50
13. miRNA microarray: 51
14. Statistics: 51
Results and discussions 52
1. SK228 reduces the in vitro migration and invasion activities of cancer cells. 52
2. SK228 treatment leads to the regulation of EMT marker expression and the reversal of EMT in human breast cancer cells. 54
3. Regulation of miRNA-200 family expression by SK228 in breast cancer cells. 57
4. SK228 inhibits histone deacetylase activities in breast cancer cells. 59
Conclusion 60
Reference List 90
參考文獻 References
1. Department of Health EY, R.O.C. (TAIWAN). http://www.doh.gov.tw.
2. Kim YS, Milner JA: Targets for indole-3-carbinol in cancer prevention. The Journal of nutritional biochemistry 2005, 16(2):65-73.
3. Bradfield CA, Bjeldanes LF: Modification of carcinogen metabolism by indolylic autolysis products of Brassica oleraceae. Advances in experimental medicine and biology 1991, 289:153-163.
4. Rahman KM, Li Y, Sarkar FH: Inactivation of akt and NF-kappaB play important roles during indole-3-carbinol-induced apoptosis in breast cancer cells. Nutrition and cancer 2004, 48(1):84-94.
5. Ge X, Fares FA, Yannai S: Induction of apoptosis in MCF-7 cells by indole-3-carbinol is independent of p53 and bax. Anticancer research 1999, 19(4B):3199-3203.
6. Hong C, Firestone GL, Bjeldanes LF: Bcl-2 family-mediated apoptotic effects of 3,3'-diindolylmethane (DIM) in human breast cancer cells. Biochemical pharmacology 2002, 63(6):1085-1097.
7. Rahman KM, Aranha O, Glazyrin A, Chinni SR, Sarkar FH: Translocation of Bax to mitochondria induces apoptotic cell death in indole-3-carbinol (I3C) treated breast cancer cells. Oncogene 2000, 19(50):5764-5771.
8. Rahman KM, Aranha O, Sarkar FH: Indole-3-carbinol (I3C) induces apoptosis in tumorigenic but not in nontumorigenic breast epithelial cells. Nutrition and cancer 2003, 45(1):101-112.
9. Bonnesen C, Eggleston IM, Hayes JD: Dietary indoles and isothiocyanates that are generated from cruciferous vegetables can both stimulate apoptosis and confer protection against DNA damage in human colon cell lines. Cancer research 2001, 61(16):6120-6130.
10. Kim EJ, Park SY, Shin HK, Kwon DY, Surh YJ, Park JH: Activation of caspase-8 contributes to 3,3'-Diindolylmethane-induced apoptosis in colon cancer cells. The Journal of nutrition 2007, 137(1):31-36.
11. Suzui M, Inamine M, Kaneshiro T, Morioka T, Yoshimi N, Suzuki R, Kohno H, Tanaka T: Indole-3-carbinol inhibits the growth of human colon carcinoma cells but enhances the tumor multiplicity and volume of azoxymethane-induced rat colon carcinogenesis. International journal of oncology 2005, 27(5):1391-1399.
12. Zheng Q, Hirose Y, Yoshimi N, Murakami A, Koshimizu K, Ohigashi H, Sakata K, Matsumoto Y, Sayama Y, Mori H: Further investigation of the modifying effect of various chemopreventive agents on apoptosis and cell proliferation in human colon cancer cells. Journal of cancer research and clinical oncology 2002, 128(10):539-546.
13. Chinni SR, Li Y, Upadhyay S, Koppolu PK, Sarkar FH: Indole-3-carbinol (I3C) induced cell growth inhibition, G1 cell cycle arrest and apoptosis in prostate cancer cells. Oncogene 2001, 20(23):2927-2936.
14. Jeon KI, Rih JK, Kim HJ, Lee YJ, Cho CH, Goldberg ID, Rosen EM, Bae I: Pretreatment of indole-3-carbinol augments TRAIL-induced apoptosis in a prostate cancer cell line, LNCaP. FEBS letters 2003, 544(1-3):246-251.
15. Nachshon-Kedmi M, Yannai S, Haj A, Fares FA: Indole-3-carbinol and 3,3'-diindolylmethane induce apoptosis in human prostate cancer cells. Food and chemical toxicology 2003, 41(6):745-752.
16. Xu Y, Zhang J, Dong WG: Indole-3-carbinol (I3C)-induced apoptosis in nasopharyngeal cancer cells through Fas/FasL and MAPK pathway. Medical oncology 2011, 28(4):1343-1348.
17. Zhu W, Li W, Yang G, Zhang Q, Li M, Yang X: Indole-3-carbinol inhibits nasopharyngeal carcinoma. International journal of toxicology 2010, 29(2):185-192.
18. Choi HS, Cho MC, Lee HG, Yoon DY: Indole-3-carbinol induces apoptosis through p53 and activation of caspase-8 pathway in lung cancer A549 cells. Food and chemical toxicology 2010, 48(3):883-890.
19. Chen DZ, Qi M, Auborn KJ, Carter TH: Indole-3-carbinol and diindolylmethane induce apoptosis of human cervical cancer cells and in murine HPV16-transgenic preneoplastic cervical epithelium. The Journal of nutrition 2001, 131(12):3294-3302.
20. Savino JA, 3rd, Evans JF, Rabinowitz D, Auborn KJ, Carter TH: Multiple, disparate roles for calcium signaling in apoptosis of human prostate and cervical cancer cells exposed to diindolylmethane. Molecular cancer therapeutics 2006, 5(3):556-563.
21. Rahman KW, Sarkar FH: Inhibition of nuclear translocation of nuclear factor-{kappa}B contributes to 3,3'-diindolylmethane-induced apoptosis in breast cancer cells. Cancer research 2005, 65(1):364-371.
22. Takada Y, Andreeff M, Aggarwal BB: Indole-3-carbinol suppresses NF-kappaB and IkappaBalpha kinase activation, causing inhibition of expression of NF-kappaB-regulated antiapoptotic and metastatic gene products and enhancement of apoptosis in myeloid and leukemia cells. Blood 2005, 106(2):641-649.
23. Cram EJ, Liu BD, Bjeldanes LF, Firestone GL: Indole-3-carbinol inhibits CDK6 expression in human MCF-7 breast cancer cells by disrupting Sp1 transcription factor interactions with a composite element in the CDK6 gene promoter. The Journal of biological chemistry 2001, 276(25):22332-22340.
24. Garcia HH, Brar GA, Nguyen DH, Bjeldanes LF, Firestone GL: Indole-3-carbinol (I3C) inhibits cyclin-dependent kinase-2 function in human breast cancer cells by regulating the size distribution, associated cyclin E forms, and subcellular localization of the CDK2 protein complex. The Journal of biological chemistry 2005, 280(10):8756-8764.
25. Hong C, Kim HA, Firestone GL, Bjeldanes LF: 3,3'-Diindolylmethane (DIM) induces a G(1) cell cycle arrest in human breast cancer cells that is accompanied by Sp1-mediated activation of p21(WAF1/CIP1) expression. Carcinogenesis 2002, 23(8):1297-1305.
26. Vivar OI, Lin CL, Firestone GL, Bjeldanes LF: 3,3'-Diindolylmethane induces a G(1) arrest in human prostate cancer cells irrespective of androgen receptor and p53 status. Biochemical pharmacology 2009, 78(5):469-476.
27. Zhang J, Hsu BAJ, Kinseth BAM, Bjeldanes LF, Firestone GL: Indole-3-carbinol induces a G1 cell cycle arrest and inhibits prostate-specific antigen production in human LNCaP prostate carcinoma cells. Cancer 2003, 98(11):2511-2520.
28. Meng Q, Qi M, Chen DZ, Yuan R, Goldberg ID, Rosen EM, Auborn K, Fan S: Suppression of breast cancer invasion and migration by indole-3-carbinol: associated with up-regulation of BRCA1 and E-cadherin/catenin complexes. Journal of molecular medicine 2000, 78(3):155-165.
29. Hung WC, Chang HC: Indole-3-carbinol inhibits Sp1-induced matrix metalloproteinase-2 expression to attenuate migration and invasion of breast cancer cells. Journal of agricultural and food chemistry 2009, 57(1):76-82.
30. Rahman KM, Sarkar FH, Banerjee S, Wang Z, Liao DJ, Hong X, Sarkar NH: Therapeutic intervention of experimental breast cancer bone metastasis by indole-3-carbinol in SCID-human mouse model. Molecular cancer therapeutics 2006, 5(11):2747-2756.
31. Reed GA, Arneson DW, Putnam WC, Smith HJ, Gray JC, Sullivan DK, Mayo MS, Crowell JA, Hurwitz A: Single-dose and multiple-dose administration of indole-3-carbinol to women: pharmacokinetics based on 3,3'-diindolylmethane. Cancer epidemiology, biomarkers & prevention 2006, 15(12):2477-2481.
32. Chao WR, Yean D, Amin K, Green C, Jong L: Computer-aided rational drug design: a novel agent (SR13668) designed to mimic the unique anticancer mechanisms of dietary indole-3-carbinol to block Akt signaling. Journal of medicinal chemistry 2007, 50(15):3412-3415.
33. Lee CH, Yao CF, Huang SM, Ko S, Tan YH, Lee-Chen GJ, Wang YC: Novel 2-step synthetic indole compound 1,1,3-tri(3-indolyl)cyclohexane inhibits cancer cell growth in lung cancer cells and xenograft models. Cancer 2008, 113(4):815-825.
34. Thiery JP, Acloque H, Huang RY, Nieto MA: Epithelial-mesenchymal transitions in development and disease. Cell 2009, 139(5):871-890.
35. Blick T, Hugo H, Widodo E, Waltham M, Pinto C, Mani SA, Weinberg RA, Neve RM, Lenburg ME, Thompson EW: Epithelial mesenchymal transition traits in human breast cancer cell lines parallel the CD44(hi/)CD24 (lo/-) stem cell phenotype in human breast cancer. Journal of mammary gland biology and neoplasia 2010, 15(2):235-252.
36. Heldin CH, Vanlandewijck M, Moustakas A: Regulation of EMT by TGFbeta in cancer. FEBS letters 2012, 586(14):1959-1970.
37. Oliveri P, Tu Q, Davidson EH: Global regulatory logic for specification of an embryonic cell lineage. Proceedings of the National Academy of Sciences of the United States of America 2008, 105(16):5955-5962.
38. Thiery JP, Sleeman JP: Complex networks orchestrate epithelial-mesenchymal transitions. Nature reviews Molecular cell biology 2006, 7(2):131-142.
39. Berx G, Cleton-Jansen AM, Nollet F, de Leeuw WJ, van de Vijver M, Cornelisse C, van Roy F: E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. The EMBO journal 1995, 14(24):6107-6115.
40. Siitonen SM, Kononen JT, Helin HJ, Rantala IS, Holli KA, Isola JJ: Reduced E-cadherin expression is associated with invasiveness and unfavorable prognosis in breast cancer. American journal of clinical pathology 1996, 105(4):394-402.
41. Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG, Portillo F, Nieto MA: The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature cell biology 2000, 2(2):76-83.
42. Comijn J, Berx G, Vermassen P, Verschueren K, van Grunsven L, Bruyneel E, Mareel M, Huylebroeck D, van Roy F: The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular cell 2001, 7(6):1267-1278.
43. Guaita S, Puig I, Franci C, Garrido M, Dominguez D, Batlle E, Sancho E, Dedhar S, De Herreros AG, Baulida J: Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. The Journal of biological chemistry 2002, 277(42):39209-39216.
44. Hajra KM, Chen DY, Fearon ER: The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer research 2002, 62(6):1613-1618.
45. Ambros V: MicroRNA pathways in flies and worms: growth, death, fat, stress, and timing. Cell 2003, 113(6):673-676.
46. Iorio MV, Croce CM: MicroRNAs in cancer: small molecules with a huge impact. Journal of clinical oncology 2009, 27(34):5848-5856.
47. Jansson MD, Lund AH: MicroRNA and cancer. Molecular oncology 2012, 6(6):590-610.
48. Gregory PA, Bert AG, Paterson EL, Barry SC, Tsykin A, Farshid G, Vadas MA, Khew-Goodall Y, Goodall GJ: The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature cell biology 2008, 10(5):593-601.
49. Park SM, Gaur AB, Lengyel E, Peter ME: The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes & development 2008, 22(7):894-907.
50. Li Y, Kong D, Wang Z, Sarkar FH: Regulation of microRNAs by natural agents: an emerging field in chemoprevention and chemotherapy research. Pharmaceutical research 2010, 27(6):1027-1041.
51. Li Y, VandenBoom TG, 2nd, Kong D, Wang Z, Ali S, Philip PA, Sarkar FH: Up-regulation of miR-200 and let-7 by natural agents leads to the reversal of epithelial-to-mesenchymal transition in gemcitabine-resistant pancreatic cancer cells. Cancer research 2009, 69(16):6704-6712.
52. Meng Q, Goldberg ID, Rosen EM, Fan S: Inhibitory effects of Indole-3-carbinol on invasion and migration in human breast cancer cells. Breast cancer research and treatment 2000, 63(2):147-152.
53. Cochrane DR, Spoelstra NS, Howe EN, Nordeen SK, Richer JK: MicroRNA-200c mitigates invasiveness and restores sensitivity to microtubule-targeting chemotherapeutic agents. Molecular cancer therapeutics 2009, 8(5):1055-1066.
54. Howe EN, Cochrane DR, Richer JK: Targets of miR-200c mediate suppression of cell motility and anoikis resistance. Breast cancer research : BCR 2011, 13(2):R45.
55. Sarrio D, Palacios J, Hergueta-Redondo M, Gomez-Lopez G, Cano A, Moreno-Bueno G: Functional characterization of E- and P-cadherin in invasive breast cancer cells. BMC cancer 2009, 9:74.
56. Frixen UH, Behrens J, Sachs M, Eberle G, Voss B, Warda A, Lochner D, Birchmeier W: E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. The Journal of cell biology 1991, 113(1):173-185.
57. Spaderna S, Schmalhofer O, Wahlbuhl M, Dimmler A, Bauer K, Sultan A, Hlubek F, Jung A, Strand D, Eger A et al: The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer research 2008, 68(2):537-544.
58. Peinado H, Ballestar E, Esteller M, Cano A: Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Molecular and cellular biology 2004, 24(1):306-319.
59. Olmeda D, Moreno-Bueno G, Flores JM, Fabra A, Portillo F, Cano A: SNAI1 is required for tumor growth and lymph node metastasis of human breast carcinoma MDA-MB-231 cells. Cancer research 2007, 67(24):11721-11731.
60. Aigner K, Dampier B, Descovich L, Mikula M, Sultan A, Schreiber M, Mikulits W, Brabletz T, Strand D, Obrist P et al: The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene 2007, 26(49):6979-6988.
61. Eger A, Aigner K, Sonderegger S, Dampier B, Oehler S, Schreiber M, Berx G, Cano A, Beug H, Foisner R: DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene 2005, 24(14):2375-2385.
62. Nieto MA, Sargent MG, Wilkinson DG, Cooke J: Control of cell behavior during vertebrate development by Slug, a zinc finger gene. Science 1994, 264(5160):835-839.
63. Casas E, Kim J, Bendesky A, Ohno-Machado L, Wolfe CJ, Yang J: Snail2 is an essential mediator of Twist1-induced epithelial mesenchymal transition and metastasis. Cancer research 2011, 71(1):245-254.
64. Thiery JP: Epithelial-mesenchymal transitions in tumour progression. Nature reviews Cancer 2002, 2(6):442-454.
65. Korsching E, Packeisen J, Liedtke C, Hungermann D, Wulfing P, van Diest PJ, Brandt B, Boecker W, Buerger H: The origin of vimentin expression in invasive breast cancer: epithelial-mesenchymal transition, myoepithelial histogenesis or histogenesis from progenitor cells with bilinear differentiation potential? The Journal of pathology 2005, 206(4):451-457.
66. Takeyama Y, Sato M, Horio M, Hase T, Yoshida K, Yokoyama T, Nakashima H, Hashimoto N, Sekido Y, Gazdar AF et al: Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer letters 2010, 296(2):216-224.
67. Hazan RB, Phillips GR, Qiao RF, Norton L, Aaronson SA: Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis. The Journal of cell biology 2000, 148(4):779-790.
68. Beaver LM, Yu TW, Sokolowski EI, Williams DE, Dashwood RH, Ho E: 3,3'-Diindolylmethane, but not indole-3-carbinol, inhibits histone deacetylase activity in prostate cancer cells. Toxicology and applied pharmacology 2012, 263(3):345-351.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code