Responsive image
博碩士論文 etd-0712113-143435 詳細資訊
Title page for etd-0712113-143435
論文名稱
Title
以次氯酸鈉串聯鹼性過氧化氫二段洗滌法去除聚丙烯及聚苯乙烯熱熔排氣異味之研究
Chemical scrubbing of odorous fume emitted form hot melt granulation of recycled polypropylene and polystyrene plastics
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-05
繳交日期
Date of Submission
2013-08-14
關鍵字
Keywords
異味、過氧化氫、熱熔、次氯酸鈉、聚丙烯、聚苯乙烯
sodium hypochlorite, hydrogen peroxide, renewable polystyrene, odor control, renewable polypropylene, Hot melt
統計
Statistics
本論文已被瀏覽 5718 次,被下載 930
The thesis/dissertation has been browsed 5718 times, has been downloaded 930 times.
中文摘要
本研究主要目的在探討使用次氯酸鈉(NaOCl)串聯鹼性過氧化氫(H2O2)二段式洗滌法,去除聚丙烯(PP)、聚苯乙烯(PS)熱熔排氣異味。次氯酸鈉洗滌主要為洗除排氣中異味,鹼性過氧化氫洗滌為去除前段洗滌產生之氯氣。模擬回收工業製程排氣中揮發性有機物(VOCs),以改善排氣及臭味,達到更好的處理效果,另外,亦可降低社區民眾之異味陳情頻率。研究分二主題進行:其一為去除PP 熱熔排氣VOCs 及異味;另一為去除聚PS 熱熔排氣VOCs 及異味,供試含VOCs 及異味氣體樣品在實驗室以烘烤相關回收廢塑膠產生。第一項研究進行去除 PP 熱熔排氣VOCs 及異味處理試驗,VOCs包括丙烯醛(acrolein)、丙酮(acetone)、2-丁酮(2- butanone)、4-甲基-2-戊酮(4-Methyl-2-pentanone)。實驗設備為2 組1 L 洗滌瓶,分別填充0.6 L稀釋之次氯酸鈉溶液及0.6 L 稀釋之鹼性過氧化氫溶液(H2O2),熱熔氣體樣注入速率為1 L/min。第一項試驗結果顯示:在氧化洗滌液有效氯濃度15-50 mg/L,pH(9.3-10,未作調整),氧化洗滌排氣再以35 mg/L 過氧化氫、pH 12.0-12.5之水溶液將氯氣還原,熱熔氣體中揮發性有機物45-204 ppm (as methane)利用二段式洗滌法,去除率約為90%。熱融排氣主要VOCs成分為丙烯醛、丙酮、2-丁酮、4-甲基-2-戊酮,二段化學洗滌對此諸VOCs 之去除率分別為99.2-97.8%。廢氣樣品洗滌前異味濃度為5,500,洗滌後小於98,去除率98%,符合環保署公告固定污染源空氣污染物排放標準。依試驗結果計算,熔融排氣量為1,000 m3,12%有效氯漂白水用量為0.76-1.43 kg,以此法洗滌去除異味,每1,000 m3 排氣處理之藥品(次氯酸鈉、雙氧水、液鹼)費用合計約USD 0.25。折合新台幣7.4元。第二項研究進行去除PS VOCs 熱熔排氣異味之處理試驗,VOCs主要成分為丙烯醛(acrolein)、丙酮(acetone)、苯、乙苯(benzene、ethyl benzene)、苯乙烯(styrene)、α-甲基苯乙烯(α-methyl styrene)。實驗設備為2 組1 L 洗滌瓶,分別填充0.6 L 稀釋之次氯酸鈉溶液及0.6 L 稀釋之鹼性過氧化氫溶液,熱熔氣體注入速率為1 L/min。第二項試驗結果顯示,在洗滌液有效氯為44-375 mg/L、pH=6.5-7.06 時,排氣再以35 mg/L 過氧化氫、pH>12 之水溶液吸收,熱熔氣體中揮發性有機物(VOCs) 3.2-55.5 ppm (as methane equivalent)可去除約90%。VOCs 去除率為丙烯醛及α-甲基苯乙烯約100 %,丙酮99 %、苯乙烯82 %,苯及乙苯為39 %。廢氣樣品洗滌前異味濃度為3,090,洗滌後小於55,去除率98%,符合環保署公告固定污染源空氣污染物排放標準。操作費用估算顯示,以此法洗滌去除異味,每1,000m3 排氣處理之藥品(次氯酸鈉、雙氧水、液鹼)費用合計約USD 0.32。折合新台幣9.5 元。
Abstract
This study aimed to develop a two-stage scrubbing process using sodium hypochlorite (NaOCl) solution as an oxidation liquor to absorb and oxidize VOCs in waste gases emitted from melting operations of wasted plastics for reclamation of them. Followed by the oxidative scrubber, a reductive scrubber using alkaline hydrogen peroxide solution was used to absorb and reduce the chlorine in the gas emitted from the proceeding scrubber.
The study contains two topics. The first is a performance test of the process on the elimination of VOCs and odorous compounds from hot-melting operation of used PP (polypropylene) plastics. The second is on the same topics of used PS (polystyrene) plastics. Laboratory scrubbing bottles with a liquid volume of 600 mL were used with the hot melt gas injected into the system at a rate of 1 L/min at 25oC.
Results indicate that by purging the test gas through a solution with an available chlorine of 15-50 mg/L at an unadjusted pH (9.3 to 10) for oxidation of the absorbed odorous compounds, and followed through a solution with pH in the range of 12.0-12.5 and 0.35 % H2O2 for absorption and reduction of chlorine (<3.8 ppm) in the exhaust gas from the oxidation liquid. VOCs in the range of 45-204 ppm (expressed as methane equivalent) was removed. VOCs in the hot melt exhaust consist mainly of acrolein, acetone, 2-butanone, and 4-methyl-2-pentanone. The two-stage chemical scrubbing process removed greater than 99% for all the main VOCs. Also odor intensities of the influent gas could be reduced from 5500 (expressed as dilutions to threshold) to 98. The pungent burnt plastic odor in the test gas was almost completely removed. The odor intensity (98) of the scrubbed gas meets the regulation of < 1000 for exhaust gas from an emission pipe witha height of < 18m above ground, as set by the EPA of Taiwan.

Estimations indicate that it requires around 1.38, 0.0173, and 0.0318 kg of NaOCl solution (12% available Cl2), H2O2 solution (35% H2O2), and sodium hydroxide solution (45% NaOH), respectively for scrubbing 1000 normal cubic meters (Nm3) of the exhaust gas. Chemical costs totaled approximately US $0.25. The second topic, performance of remove volatile organic compounds (VOCs) and the associated odors from polystyrene (PS) hot-melting exhaust gas. VOCs in the hot melt exhaust consist mainly of acrolein, acetone, benzene, ethyl benzene, styrene and α-methyl styrene. Laboratory scrubbing bottles with a liquid volume of 600 mL were used with the hot melt gas injected into the system at a rate of 1 L/min at 25oC. Results indicate that by purging the test gas through a solution with an available chlorine of 300-370 mg/L at an adjusted pH (6.5- 7.0) for oxidation of the absorbed odorous compounds, and then through a solution with pH >12.0 and 0.35 % H2O2 for absorption and reduction of Cl2 (< 11.2 ppm) in the exhaust gas from the oxidation liquid, around 90% of the VOCs in the range of 3.2-55.5 ppm (expressed as methane equivalent) was removed. The two-stage chemical scrubbing process removed 82-100% of the detected VOCs except benzene ethyl benzene. Also odor intensities of the influent gas could be reduced from 3090 (expressed as dilutions to threshold) to 55. The pungent burnt plastic odor in the test gas was almost completely removed. The odor intensity (55) of the scrubbed gas meets the regulation of < 1000 for exhaust gas from an emission pipe with a height of < 18m above ground, as set by the EPA of Taiwan.
Estimations indicate that it requires around 1.62, 0.0452, and 0.0827 kg NaOCl solution (12% available Cl2), H2O2 solution (35% H2O2), and sodium hydroxide solution (45% NaOH), respectively for scrubbing 1,000 m3 of the exhaust gas with 10 ppm NMHC (expressed as methane equivalent). The chemicals cost a total of approximately USD 0.32.
The study has developed a new, effective and economic process for reducing odorous compounds in the hot-melted gas. When commercialized the process is hoped to decrease a lot of odorous complaints.
目次 Table of Contents
謝誌 i
中文摘要 ii
Abstract v
List of Contents vii
List of Tables x
List of Figures xi
Chapter I Introduction 1
1.1 Motivations of the Study 1
Chapter II Material AND Methods 6
2.1 PP 6
2.1.1 Experimental Setup of PP 6
2.1.2 Materials 9
2.1.3 Analytical 9
2.2 PS 10
2.2.1 Experimental Setup of PS 10
2.2.2 Materials 11
2.2.3 Analytical 11
Chapter III Results and Discussions 13
3.1 Performances 13
Effects of initial available chlorine concentration on
the NMHC removal
3.1.1. PP 13
3.1.2 PS 17
3.2. GC-MSD examination 23
3.2.1. PP 23
3.2.2 PS 24
3.3 Olfactory test 25
3.3.1 PP 25
3.3.2 PS 25
3.4. Chlorine consumption for the NMHC removal 25
3.4.1 PP 25
3.4.2 PS 26
3.5 Estimation of chemical requirements 27
3.5.1 PP 27
3.5.2 PS 28
Chapter IV Conclusions 29
4.1 Test on the removal of PP 29
4.2 Test on PS removal 29
Chapter V Suggestion 31
5.1 Suggestion 31
References 32
Attachments 34
Appendix I Author’s Publication List 89
Appendix II 作者簡歷 90
參考文獻 References
  Adams, K.; Bankston, J.; Barlow, A.; Holdren, M.W.; Mayer, J.; Marchesani, V.J. (1999). Development of emission factors for polypropylene processing, J. Air & Waste Manage. Assoc., 49:49-56.
  Barlow, A.; Contos, D.A.; Holdren, M.W.; Garrison, P.J.; Harris, L.R.;Janke, B. (1996). Development of emission factors for polyethylene processing, J. Air & Waste Manage. Assoc., 46: 569-580.
  Chang, S.T.; Chou, M.S.; Chang, H.Y. (2012). Controlling odorous fumes produced by melting recycled polypropylene. Environ. Eng. Sci., 29(12):1063-1068.
  Cheng, H.H.; Hsieh, C.C. (2010). Integration of chemical scrubber with sodium hypochlorite and surfactant for removal of hydrocarbons in cooking oil fume, J. Hazardous Materials, 182:39-44.
  Cheremisinoff, P.N. (1992). Industrial Odour Control, Butterworth-Heinemann Ltd., Great Britain.
  Chungsiriporn J.; Bunyakan C.; Nikom R.(2006). Toluene removal by oxidation reaction in spray wet scrubber: experimental, modeling and optimization, Songklanakarin J. Sci. Technol. 28(6):1265-1274.
  Eastem Research Group (1997). Final Report: Preferred and Alternative Methods for Estimating Air Emissions from Wastewater Collection and Treatment, Eastem Research Group, Morrisville, North Carolina, USA.
  Forrest, M.J.; Jolly, A.M.; Holding, S.R.; Richards, S.J.(1955). Emissions from processing thermoplastics. Ann. Occup. Hyg., 39:35-53.
  Greenwood, N.N. and Earnshaw, A. (1997). Chemistry of the Elements 2nd ed., p 856. Hoff, A.; Jacobsson, S. (1981)“Thermo-oxidative degradation of low-density polyethylene close to industrial processing conditions. J. App. Polym. Sci., 26: 3409-3423.
  Iwasaki Y., (2003).The history of odor measurement in Japan and triangle odor bag method, in: Odor Measurement Review, Japan Ministry of the Environment, 37-47.
  Lide, D.R. and Frederikse, H.P.R. (1995). CRC Handbook of Chemistry and Physics, 76th Ed., D. R. Lide and H. P. R. Frederikse, ed(s)., CRC Press, Inc., Boca Raton, FL.
  Liu, J.Y.; Li, X.F.; Li, Y.Z.; Chang, W.B.; and Huang, A.J. (2002). Oxidation of styrene by various oxidants with different kinds of metalloporphyrins, J. Molecular Catalysis, 187(2), 163-167.
  Mirafzal, G.A.; Lozeva, A.M. (1998). Phase transfer catalyzed oxidation of alcohols with sodium hypochlorite. Tetrahedron Letters, 38:7263-7266.
  Morris, J.C. (1966). The acid ionization constant of HOCl from 5 to 35°C. J. Phys. Chem., 70:3798-3805.
  Tsai, C.J.; Chen, M.L.; Chang, K.F.; Chang, F.K.; Mao, I.F. (2009). Characteristics analysis of the ambient malodor and hazardous components in plastic waste recycling plants.
  Proceeding of the Conference on the Industrial Hygiene and Occupational Medicine, Taichung, Taiwan.
  USEPA(1983), Methods for Chemical Analysis of Water and Wastes, Method 330.5, Total Residual Chlorine, EPA/600/4-79/020.
  Wagman, D.D., Evans, W.H.; Parker, V.B.; Schumm, R.H.; Halow, I.; Bailey, S.M.; Churney, K.L.; Nuttall, R.L. (1982). The NBS tables of chemical thermodynamic properties; Selected values for inorganic and C1 and C2 organic substances in SI units, J. Phys. Chem. Ref. Data, 11, suppl. 2.
  Xiang, Q.; Mitra, S.; Xanthos, M.; Dey, S.K.(2002). Evolution and kinetics of volatile organic compounds generated during low-temperature polymer degradation. J. Air & Waste Manage. Assoc., 52:95-103.
  Yamashita, K.; Yamamoto, N.; Mizukoshi, A.; Noguchi, M.; Ni, Y.; Yanagisawa, Y. (2009). Compositions of volatile organic compounds emitted from melted virgin and waste plastic pellets. J. Air & Waste Manage. Assoc., 59: 273-278.
  Zerbonia et al. (1995) "Survey Of Control Technologies For Low Concentration Organic Vapor Gas Streams" EPA-456/R-95-003 May 1995.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code