Responsive image
博碩士論文 etd-0712114-115413 詳細資訊
Title page for etd-0712114-115413
論文名稱
Title
微流體液相分離晶片及其於金奈米粒子 合成與多巴胺檢測之應用
Microfluidic Chip for Immiscible Liquids Separation and Its Applications on AuNPs Synthesis and Dopamine Detection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-31
繳交日期
Date of Submission
2014-08-12
關鍵字
Keywords
吸收光譜、光纖、多巴胺、金奈米粒子、液相分離、微流體晶片
Dopamine, Microfluidic chip, Gold nanoparticles, Liquid phase separation, Absorbance, Optical-fiber
統計
Statistics
本論文已被瀏覽 5718 次,被下載 386
The thesis/dissertation has been browsed 5718 times, has been downloaded 386 times.
中文摘要
本研究發展了一創新的液相分離微流體晶片,利用設計不同深度的管道結構創造足夠的毛細管作用力與液體表面張力之間差異,將兩不互溶且低表面張力液體達到近90%的分離效率,如:甲苯和水。此外,液滴式微流體系統擁有較多的雙液相界面,且藉由液滴內部持續循環的流場,有助於提供化學反應穩定且擴散均勻的液相混合,對於奈米粒子的合成有較佳的應用。因此,本研究開發之微流體晶片有效提升金奈米粒子(AuNPs)於雙液相合成,在T字型的管道中穩定控制還原劑(連續相)與金鹽甲苯溶液(分散相)的流速,便由連續片段的流體(Segmented flow)中合成出粒徑分布均勻的金奈米粒子,其粒徑尺寸相較於一般容器中所還原的粒徑小。利用液相分離微流體晶片,成功獲得簡易且高效率的方式收集金奈米粒子於甲苯溶液,減少粒子與過多還原劑反應而使粒徑持續成長。
本研究亦提出一種高靈敏度的多巴胺(DA)比色法檢測方式,由4-二甲氨基吡啶(DMAP)分子將甲苯中還原的金奈米粒子轉移到水相環境,再作為檢測樣品中多巴胺濃度的探針。實驗結果得知,經由相轉移的水相金奈米膠體加入多巴胺溶液後,金奈米粒子溶液會由原本珠紅色轉變為墨綠色,從吸收光譜亦可觀察到特徵吸收波峰發生藍位移(Blue shift)的情形。此外,由穿透式電子顯微鏡(TEM)更發現,原本溶液中存在粒徑13 nm的金奈米粒子被多巴鞍分子將核心蝕刻至粒徑約為2~5 nm,藉由粒徑的顯著變化來作為多巴胺生物樣品之檢測。本研究發展之DMAP-AuNPs探針對於多巴胺的檢測更擁有高靈敏度偵測極限(5 nM),在常見的量測干擾物如:抗壞血酸(AA)、高香草酸(HVA)和鄰苯二酚(CA)等物質存在下,仍擁有良好的選擇性而不會對量測造成干擾。
然而,為了使金奈米粒子應用於生物檢測時,可獲得快速樣品反應且能夠即時的作量測,本研究最終整合其生醫檢測技術於微流體晶片之開發,以玻璃光纖作為樣品吸光度量測的訊號傳輸。本研究發展的光學量測感測器是將蝕刻後的多模光纖(Multimode optical fiber)導入晶片設計的管道中,待測樣品先由液滴式微流體系統達到均勻的混合,再注入晶片中的光學檢測微管道作即時吸收光譜量測。然而,利用光學量測感測器作為吸收光譜量測時,其消耗的樣品體積只需50 nL,相較於一般光譜檢測儀擁有相對微量的耗費。由實驗結果得知,液滴式微流體系統對於化學反應動力學擁有較快的反應速率,利用本研究發展的光學檢測微流體晶片,更可提供快速且連續動態的化學反應研究。由以上結果指出,本研究發展之液相分離微流體晶片,提供多樣性應用的潛力,有利於金奈米粒子的合成或作為液相樣品的萃取。此外,藉由整合簡易的光學量測系統,便可在微流體晶片中進行快速且連續的樣品檢測。因此,本研究發展之光學檢測微流體晶片與金奈米粒子生醫檢測技術,有助於未來開發高靈敏度且快速檢測的生醫感測器,以實際應用於生物、醫藥和病理等方面的分析與檢測,更有效的縮檢樣品之銷耗及檢測時間。
Abstract
In the conventional sample extraction approach, to achieve efficient liquid-liquid phase separation for the sample analysis is an important issue. However, it is challenging to separate the immiscible liquid of low surface tension from water by using microfluidic device. Therefore, this study developed a microfluidic chip that composed of T-junction, reaction channel and a novel liquid-liquid phase separator for continuously synthesizing fine gold nanoparticles (AuNPs) in the organic solvent (toluene). The design of glass chip is capable for separating water (surface tension = 72.75 mN/m) and toluene (surface tension = 30.9 mN/m) with 92% separation efficiency, owing to design different depths of microchannel that creates large difference between liquid surface tension and capillary force. Furthermore, AuNPs that synthesized in the microdevice exhibits narrower size distribution and better dispersion in comparing to the typical vessel synthesis process.
Besides, this study successfully developed a novel and high performance colorimetric probe for dopamine (DA) detection. Aqueous-phase AuNPs extracted via 4-(dimethylamino) pyridine (DMAP) from toluene were used as the reaction probes. Interestingly finding that the original diameter of AuNPs around 13 nm which separated into 2-5 nm size after adding DA. This exhibits change in the color of AuNPs colloid from red to blackish green. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) showed the AuNPs break into the smaller sizes right after addition of DA. The DA concentration is quantitatively monitored by using UV-Vis spectrometer with a limit of detection (LOD) as low as 5 nM. In addition, the developed DA detection approach appears no significant problems in detecting DA with present common interferents such as ascorbic acid (AA), homovanillic acid (HVA) and catechol (CA).
However, many study reported that using microfluidic chip is capable to provide fast chemical reaction and rapid detection approach for biochemical analysis. This study developed a novel optical detection sensor by using the etched multi-mode optical fibers assembling in a droplet-based microfluidic system to achieve on-site absorbance measurement. Hence, the reaction of AuNPs detecting DA biosample was also capable to achieve rapid and continuously detection by using the microdevice. The proposed optical detection sensor composed by initially forming AuNPs droplet in segmented flow and measuring for sample absorbance in a 10 mm long of optical detection channel. Note that using the microdevice for absorbance measurement only required sample volume for 50 nL, which exhibits lower sample consumption in comparing to detect in the conventional cuvette system. Results indicated the developed microdevice capable for steady measuring sample absorbance with operating flow rate in the range from 5-25 μL/min. In addition, the detection approach shows faster reaction response for kinetic measurement of DA core etching AuNPs.
Therefore, this study successfully developed microfluidic chip to provide efficient liquid-liquid phase separation, which benefit to use for the sample extraction and synthesizing AuNPs of uniform size distribution in toluene. In addition, assembling optical fibers on the microfluidic chip that have offers simple and high performance optical detection to the bioanalysis. In this regard, the proposed microdevice with using AuNPs probes shows great potential to achieve high sensitivity detection for the future applying to such as biology, medical and clinic diagnostic applications.
目次 Table of Contents
論文審定書 i
Acknowledgements ii
中文摘要 iii
Abstract v
List of Figures x
List of Tables xv
Nomenclature xvi
Abbreviations xviii
Chapter 1 Introduction 1
1.1 Motivation and objectives 3
1.2 Thesis organization 5
Chapter 2 Background and literature reviews 9
2.1 Multiphase microfluidic systems 9
2.1.1 Microfluidic systems 9
2.1.2 Droplet-based microfluidic systems 10
2.1.3 Multiphase droplet formation in microfluidic systems 10
2.1.4 Segmented flow in microfluidic systems 12
2.1.5 Taylor circulation of the segmented flow 14
2.1.6 Different patterns of the segmented flow 16
2.2 Liquid-liquid phase separation 17
2.2.1 Liquid phase separation in microfluidic systems 17
2.2.2 Capillary force for liquid-liquid separation 18
2.3 Gold nanoparticles 20
2.3.1 Applications of gold nanoparticles 20
2.3.2 Gold nanoparticle synthesis in aqueous-phase 22
2.3.3 Gold nanoparticle synthesis in organic-phase 25
2.3.4 Gold nanoparticles phase transfer 26
2.3.5 Gold nanoparticle synthesis in microfluidic systems 29
2.3.6 Gold nanoparticles for colorimetric detection 32
2.3.7 Core etching technique for gold cluster formation 34
2.3.8 Gold nanoparticles for dopamine detection 36
2.4 Detection in microfluidic systems 38
2.4.1 Optical detection in microfluidic systems 38
2.4.2 Optical fiber-based detection in microfluidic systems 38
Chapter 3 Working principle and theory 40
3.1 Chip design for liquid-solvent separation 40
3.2 The working principle of using DMAP-AuNPs for DA detection 41
3.3 The design of optical detection sensor by using microfluidic chip 42
3.4 Absorbance detection theory 43
Chapter 4 Materials and methods 46
4.1 Experiment of AuNPs synthesis by using microfluidic chip 46
4.1.1 Reagents and apparatus 46
4.1.2 Microfluidic chip fabrication 47
4.1.3 AuNPs synthesis using typical vessel system 48
4.1.4 AuNPs synthesis using the microfluidic chip 49
4.2 The preparation of DMAP-AuNPs for DA detection 49
4.2.1 Reagents and apparatus 49
4.2.2 Preparation of the DMAP-AuNPs probes 51
4.2.3 Colorimetric detection of DA biosample 52
4.3 Optical detection sensor using microfluidic chip 53
4.3.1 Reagent and apparatus 53
4.3.2 Optical fibers assembling on the microdevice 54
4.3.3 Microfluidic chip fabrication 55
Chapter 5 Results and discussion 57
5.1 Liquid-solvent separation for synthesizing AuNPs in toluene 57
5.2 Core etching of DMAP-AuNPs for colorimetric DA detection 62
5.3 DA detection in microfluidic chip 69
Chapter 6 Conclusions and Future works 82
6.1 Conclusions 82
6.2 Future works 84
Reference 85
參考文獻 References
[1] V. Srinivasan, V. K. Pamula, and R. B. Fair, “Droplet-based microfluidic lab-on-a-chip for glucose detection,” Analytica Chimica Acta, vol. 507, pp. 145-150, 2004.
[2] A. Manz, N. Graber, and H. á. Widmer, “Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sensors and Actuators B: Chemical, vol. 1, pp. 244-248, 1990.
[3] H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Applied Physics Letters, vol. 83, pp. 4664-4666, 2003.
[4] A. D. Stroock, S. K. Dertinger, A. Ajdari, I. Mezić, H. A. Stone, and G. M. Whitesides, “Chaotic mixer for microchannels,” Science, vol. 295, pp. 647-651, 2002.
[5] P. Mary, V. Studer, and P. Tabeling, “Microfluidic droplet-based liquid-liquid extraction,” Analytical Chemistry, vol. 80, pp. 2680-2687, 2008.
[6] J. Tang, X. B. Zhang, W. F. Cai, and F. M. Wang, “Liquid-liquid extraction based on droplet flow in a vertical microchannel,” Experimental Thermal and Fluid Science, vol. 49, pp. 185-192, 2013.
[7] D. Y. Liu, G. T. Liang, X. X. Lei, B. Chen, W. Wang, and X. M. Zhou, “Highly efficient capillary polymerase chain reaction using an oscillation droplet microreactor,” Analytica Chimica Acta, vol. 718, pp. 58-63, 2012.
[8] H. Song, J. D. Tice, and R. F. Ismagilov, “A microfluidic system for controlling reaction networks in time,” Angewandte Chemie, vol. 115, pp. 792-796, 2003.
[9] S. Y. Teh, R. Lin, L. H. Hung, and A. P. Lee, “Droplet microfluidics,” Lab on a Chip, vol. 8, pp. 198-220, 2008.
[10] I. Kobayashi, K. Uemura, and M. Nakajima, “Formulation of monodisperse emulsions using submicron-channel arrays,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 296, pp. 285-289, 2007.
[11] M. T. Guo, A. Rotem, J. A. Heyman, and D. A. Weitz, “Droplet microfluidics for high-throughput biological assays,” Lab on a Chip, vol. 12, pp. 2146-2155, 2012.
[12] L. Mazutis, J. C. Baret, P. Treacy, Y. Skhiri, A. F. Araghi, M. Ryckelynck, V. Taly, and A. D. Griffiths, “Multi-step microfluidic droplet processing: kinetic analysis of an in vitro translated enzyme,” Lab on a Chip, vol. 9, pp. 2902-2908, 2009.
[13] Z. Han, W. Li, Y. Huang, and B. Zheng, “Measuring rapid enzymatic kinetics by electrochemical method in droplet-based microfluidic devices with pneumatic valves,” Analytical Chemistry, vol. 81, pp. 5840-5845, 2009.
[14] A. Huebner, D. Bratton, G. Whyte, M. Yang, C. Abell, and F. Hollfelder, “Static microdroplet arrays: a microfluidic device for droplet trapping, incubation and release for enzymatic and cell-based assays,” Lab on a Chip, vol. 9, pp. 692-698, 2009.
[15] Y. Schaerli and F. Hollfelder, “The potential of microfluidic water-in-oil droplets in experimental biology,” Molecular Biosystems, vol. 5, pp. 1392-1404, 2009.
[16] D. C. Yin, H. M. Lu, L. Q. Geng, Z. H. Shi, H. M. Luo, H. S. Li, Y. J. Ye, W. H. Guo, P. Shang, and N. I. Wakayama, “Growing and dissolving protein crystals in a levitated and containerless droplet,” Journal of Crystal Growth, vol. 310, pp. 1206-1212, 2008.
[17] B. Zheng, L. S. Roach, and R. F. Ismagilov, “Screening of protein crystallization conditions on a microfluidic chip using nanoliter-size droplets,” Journal of the American Chemical Society, vol. 125, pp. 11170-11171, 2003.
[18] I. Shestopalov, J. D. Tice, and R. F. Ismagilov, “Multi-step synthesis of nanoparticles performed on millisecond time scale in a microfluidic droplet-based system,” Lab on a Chip, vol. 4, pp. 316-321, 2004.
[19] D. Koziej, C. Floryan, R. A. Sperling, A. J. Ehrlicher, D. Issadore, R. Westervelt, and D. A. Weitz, “Microwave dielectric heating of non-aqueous droplets in a microfluidic device for nanoparticle synthesis,” Nanoscale, vol. 5, pp. 5468-5475, 2013.
[20] A. Utada, E. Lorenceau, D. Link, P. Kaplan, H. Stone, and D. Weitz, “Monodisperse double emulsions generated from a microcapillary device,” Science, vol. 308, pp. 537-541, 2005.
[21] J. D. Tice, A. D. Lyon, and R. F. Ismagilov, “Effects of viscosity on droplet formation and mixing in microfluidic channels,” Analytica Chimica Acta, vol. 507, pp. 73-77, 2004.
[22] J. Xu, G. Luo, S. Li, and G. Chen, “Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties,” Lab on a Chip, vol. 6, pp. 131-136, 2006.
[23] T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, “Dynamic pattern formation in a vesicle-generating microfluidic device,” Physical Review Letters, vol. 86, p. 4163, 2001.
[24] S. L. Anna, N. Bontoux, and H. A. Stone, “Formation of dispersions using “flow focusing” in microchannels,” Applied Physics Letters, vol. 82, pp. 364-366, 2003.
[25] R. Dreyfus, P. Tabeling, and H. Willaime, “Ordered and disordered patterns in two-phase flows in microchannels,” Physical Review Letters, vol. 90, pp. 144505-144505, 2003.
[26] C. N. Baroud, F. Gallaire, and R. Dangla, “Dynamics of microfluidic droplets,” Lab on a Chip, vol. 10, pp. 2032-2045, 2010.
[27] A. Guenther, M. Kreutzer, and K. Jensen, “Multiphase Transport Phenomena in Microfluidic Systems,” Langmuir, vol. 21, pp. 1547-1555, 2005.
[28] O. K. Castell, C. J. Allender, and D. A. Barrow, “Continuous molecular enrichment in microfluidic systems,” Lab on a Chip, vol. 8, pp. 1031-1033, 2008.
[29] C. J. Gerdts, V. Tereshko, M. K. Yadav, I. Dementieva, F. Collart, A. Joachimiak, R. C. Stevens, P. Kuhn, A. Kossiakoff, and R. F. Ismagilov, “Time‐Controlled Microfluidic Seeding in nL‐Volume Droplets To Separate Nucleation and Growth Stages of Protein Crystallization,” Angewandte Chemie International Edition, vol. 45, pp. 8156-8160, 2006.
[30] M. J. Fuerstman, P. Garstecki, and G. M. Whitesides, “Coding/decoding and reversibility of droplet trains in microfluidic networks,” Science, vol. 315, pp. 828-832, 2007.
[31] H. Song, D. L. Chen, and R. F. Ismagilov, “Reactions in droplets in microfluidic channels,” Angewandte Chemie International Edition, vol. 45, pp. 7336-7356, 2006.
[32] M. N. Kashid, I. Gerlach, S. Goetz, J. Franzke, J. Acker, F. Platte, D. Agar, and S. Turek, “Internal circulation within the liquid slugs of a liquid-liquid slug-flow capillary microreactor,” Industrial & Engineering Chemistry Research, vol. 44, pp. 5003-5010, 2005.
[33] M. Mendorf and D. W. Agar, “Scale‐up of Capillary Extraction Equipment,” Chemie Ingenieur Technik, vol. 83, pp. 1120-1124, 2011.
[34] M. N. Kashid, D. W. Agar, and S. Turek, “CFD modelling of mass transfer with and without chemical reaction in the liquid–liquid slug flow microreactor,” Chemical Engineering Science, vol. 62, pp. 5102-5109, 2007.
[35] A. Salim, M. Fourar, J. Pironon, and J. Sausse, “Oil–water two‐phase flow in microchannels: Flow patterns and pressure drop measurements,” The Canadian Journal of Chemical Engineering, vol. 86, pp. 978-988, 2008.
[36] P. Kuban, J. Berg, and P. K. Dasgupta, “Vertically stratified flows in microchannels. Computational simulations and applications to solvent extraction and ion exchange,” Analytical Chemistry, vol. 75, pp. 3549-3556, 2003.
[37] N. Assmann and P. R. von Rohr, “Extraction in microreactors: intensification by adding an inert gas phase,” Chemical Engineering and Processing: Process Intensification, vol. 50, pp. 822-827, 2011.
[38] P. Uhlmann, F. Varnik, P. Truman, G. Zikos, J. Moulin, P. Müller-Buschbaum, and M. Stamm, “Microfluidic emulsion separation—simultaneous separation and sensing by multilayer nanofilm structures,” Journal of Physics: Condensed Matter, vol. 23, p. 184123, 2011.
[39] S. Aljbour, H. Yamada, and T. Tagawa, “Sequential reaction-separation in a microchannel reactor for liquid–liquid phase transfer catalysis,” Topics in Catalysis, vol. 53, pp. 694-699, 2010.
[40] T. Maruyama, H. Matsushita, J. I. Uchida, F. Kubota, N. Kamiya, and M. Goto, “Liquid membrane operations in a microfluidic device for selective separation of metal ions,” Analytical Chemistry, vol. 76, pp. 4495-4500, 2004.
[41] J. G. Kralj, H. R. Sahoo, and K. F. Jensen, “Integrated continuous microfluidic liquid–liquid extraction,” Lab on a Chip, vol. 7, pp. 256-263, 2007.
[42] D. M. Fries, T. Voitl, and P. R. von Rohr, “Liquid extraction of vanillin in rectangular microreactors,” Chemical Engineering & Technology, vol. 31, pp. 1182-1187, 2008.
[43] A. Günther, M. Jhunjhunwala, M. Thalmann, M. A. Schmidt, and K. F. Jensen, “Micromixing of miscible liquids in segmented gas-liquid flow,” Langmuir, vol. 21, pp. 1547-1555, 2005.
[44] M. T. Kreutzer, A. Günther, and K. F. Jensen, “Sample dispersion for segmented flow in microchannels with rectangular cross section,” Analytical Chemistry, vol. 80, pp. 1558-1567, 2008.
[45] W. Gaakeer, M. de Croon, J. van der Schaaf, and J. Schouten, “Liquid–liquid slug flow separation in a slit shaped micro device,” Chemical Engineering Journal, vol. 207, pp. 440-444, 2012.
[46] J. H. Tsai and L. Lin, “Active microfluidic mixer and gas bubble filter driven by thermal bubble micropump,” Sensors and Actuators A: Physical, vol. 97, pp. 665-671, 2002.
[47] O. K. Castell, C. J. Allender, and D. A. Barrow, “Liquid–liquid phase separation: characterisation of a novel device capable of separating particle carrying multiphase flows,” Lab on a Chip, vol. 9, pp. 388-396, 2009.
[48] D. Angelescu, B. Mercier, D. Siess, and R. Schroeder, “Microfluidic capillary separation and real-time spectroscopic analysis of specific components from multiphase mixtures,” Analytical Chemistry, vol. 82, pp. 2412-2420, 2010.
[49] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” The Journal of Physical Chemistry B, vol. 107, pp. 668-677, 2003.
[50] J. F. Li, Y. F. Huang, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, and B. Ren, “Shell-isolated nanoparticle-enhanced Raman spectroscopy,” Nature, vol. 464, pp. 392-395, 2010.
[51] X. Qian, X. H. Peng, D. O. Ansari, Q. Yin Goen, G. Z. Chen, D. M. Shin, L. Yang, A. N. Young, M. D. Wang, and S. Nie, “In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags,” Nature Biotechnology, vol. 26, pp. 83-90, 2008.
[52] J. Wang, “Nanoparticle‐Based Electrochemical Bioassays of Proteins,” Electroanalysis, vol. 19, pp. 769-776, 2007.
[53] N. J. Wittenberg and C. L. Haynes, “Using nanoparticles to push the limits of detection,” Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, vol. 1, pp. 237-254, 2009.
[54] E. Katz and I. Willner, “Integrated nanoparticle–biomolecule hybrid systems: synthesis, properties, and applications,” Angewandte Chemie International Edition, vol. 43, pp. 6042-6108, 2004.
[55] N. L. Rosi and C. A. Mirkin, “Nanostructures in biodiagnostics,” Chemical Reviews, vol. 105, pp. 1547-1562, 2005.
[56] M. Faraday, “The Bakerian lecture: experimental relations of gold (and other metals) to light,” Philosophical Transactions of the Royal Society of London, pp. 145-181, 1857.
[57] N. L. Rosi, D. A. Giljohann, C. S. Thaxton, A. K. Lytton-Jean, M. S. Han, and C. A. Mirkin, “Oligonucleotide-modified gold nanoparticles for intracellular gene regulation,” Science, vol. 312, pp. 1027-1030, 2006.
[58] M. D. Malinsky, K. L. Kelly, G. C. Schatz, and R. P. Van Duyne, “Chain length dependence and sensing capabilities of the localized surface plasmon resonance of silver nanoparticles chemically modified with alkanethiol self-assembled monolayers,” Journal of the American Chemical Society, vol. 123, pp. 1471-1482, 2001.
[59] B. Tang, L. Cao, K. Xu, L. Zhuo, J. Ge, Q. Li, and L. Yu, “A new nanobiosensor for glucose with high sensitivity and selectivity in serum based on fluorescence resonance energy transfer (FRET) between CdTe quantum dots and Au nanoparticles,” Chemistry-a European Journal, vol. 14, pp. 3637-3644, 2008.
[60] N. T. K. Thanh and Z. Rosenzweig, “Development of an aggregation-based immunoassay for anti-protein A using gold nanoparticles,” Analytical Chemistry, vol. 74, pp. 1624-1628, 2002.
[61] S. Zeng, K. T. Yong, I. Roy, X. Q. Dinh, X. Yu, and F. Luan, “A review on functionalized gold nanoparticles for biosensing applications,” Plasmonics, vol. 6, pp. 491-506, 2011.
[62] Y. Li, H. J. Schluesener, and S. Xu, “Gold nanoparticle-based biosensors,” Gold Bulletin, vol. 43, pp. 29-41, 2010.
[63] P. Ghosh, G. Han, M. De, C. K. Kim, and V. M. Rotello, “Gold nanoparticles in delivery applications,” Advanced Drug Delivery Reviews, vol. 60, pp. 1307-1315, 2008.
[64] T. Mitsudome, A. Noujima, T. Mizugaki, K. Jitsukawa, and K. Kaneda, “Efficient aerobic oxidation of alcohols using a hydrotalcite‐supported gold nanoparticle catalyst,” Advanced Synthesis & Catalysis, vol. 351, pp. 1890-1896, 2009.
[65] D. Pissuwan, S. M. Valenzuela, and M. B. Cortie, “Therapeutic possibilities of plasmonically heated gold nanoparticles,” Trends in Biotechnology, vol. 24, pp. 62-67, 2006.
[66] X. Cao, Y. Ye, and S. Liu, “Gold nanoparticle-based signal amplification for biosensing,” Analytical Biochemistry, vol. 417, pp. 1-16, 2011.
[67] P. CooperáStevenson, “A study of the nucleation and growth processes in the synthesis of colloidal gold,” Discussions of the Faraday Society, vol. 11, pp. 55-75, 1951.
[68] S. P. Chandran, M. Chaudhary, R. Pasricha, A. Ahmad, and M. Sastry, “Synthesis of gold nanotriangles and silver nanoparticles using Aloevera plant extract,” Biotechnology Progress, vol. 22, pp. 577-583, 2006.
[69] J. Kimling, M. Maier, B. Okenve, V. Kotaidis, H. Ballot, and A. Plech, “Turkevich method for gold nanoparticle synthesis revisited,” The Journal of Physical Chemistry B, vol. 110, pp. 15700-15707, 2006.
[70] J. Polte, R. Erler, A. F. Thunemann, S. Sokolov, T. T. Ahner, K. Rademann, F. Emmerling, and R. Kraehnert, “Nucleation and growth of gold nanoparticles studied via in situ small angle X-ray scattering at millisecond time resolution,” ACS Nano, vol. 4, pp. 1076-1082, 2010.
[71] C. De Vasconcelos, M. Pereira, and J. Fonseca, “Polyelectrolytes in solution and the stabilization of colloids,” Journal of Dispersion Science and Technology, vol. 26, pp. 59-70, 2005.
[72] J. Liu and E. Luijten, “Stabilization of colloidal suspensions by means of highly charged nanoparticles,” Physical Review Letters, vol. 93, p. 247802, 2004.
[73] W. R. Glomm, “Functionalized gold nanoparticles for applications in bionanotechnology,” Journal of Dispersion Science and Technology, vol. 26, pp. 389-414, 2005.
[74] M. K. Corbierre, N. S. Cameron, and R. B. Lennox, “Polymer-stabilized gold nanoparticles with high grafting densities,” Langmuir, vol. 20, pp. 2867-2873, 2004.
[75] K.-S. Kim, D. Demberelnyamba, and H. Lee, “Size-selective synthesis of gold and platinum nanoparticles using novel thiol-functionalized ionic liquids,” Langmuir, vol. 20, pp. 556-560, 2004.
[76] E. E. Foos, A. W. Snow, M. E. Twigg, and M. G. Ancona, “Thiol-terminated di-, tri-, and tetraethylene oxide functionalized gold nanoparticles: a water-soluble, charge-neutral cluster,” Chemistry of Materials, vol. 14, pp. 2401-2408, 2002.
[77] A. G. Kanaras, F. S. Kamounah, K. Schaumburg, C. J. Kiely, and M. Brust, “Thioalkylated tetraethylene glycol: a new ligand for water soluble monolayer protected gold clusters,” Chemical Communications, pp. 2294-2295, 2002.
[78] S. Chen and K. Kimura, “Synthesis and characterization of carboxylate-modified gold nanoparticle powders dispersible in water,” Langmuir, vol. 15, pp. 1075-1082, 1999.
[79] H. Yao, O. Momozawa, T. Hamatani, and K. Kimura, “Stepwise size-selective extraction of carboxylate-modified gold nanoparticles from an aqueous suspension into toluene with tetraoctylammonium cations,” Chemistry of Materials, vol. 13, pp. 4692-4697, 2001.
[80] H. Tsunoyama and T. Tsukuda, “Magic numbers of gold clusters stabilized by PVP,” Journal of the American Chemical Society, vol. 131, pp. 18216-18217, 2009.
[81] P. Alexandridis, “Gold nanoparticle synthesis, morphology control, and stabilization facilitated by functional polymers,” Chemical Engineering & Technology, vol. 34, pp. 15-28, 2011.
[82] D. A. Giljohann, D. S. Seferos, P. C. Patel, J. E. Millstone, N. L. Rosi, and C. A. Mirkin, “Oligonucleotide loading determines cellular uptake of DNA-modified gold nanoparticles,” Nano Letters, vol. 7, pp. 3818-3821, 2007.
[83] A. K. Lytton Jean and C. A. Mirkin, “A thermodynamic investigation into the binding properties of DNA functionalized gold nanoparticle probes and molecular fluorophore probes,” Journal of the American Chemical Society, vol. 127, pp. 12754-12755, 2005.
[84] N. Zheng, J. Fan, and G. D. Stucky, “One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals,” Journal of the American Chemical Society, vol. 128, pp. 6550-6551, 2006.
[85] E. Oh, K. Susumu, R. Goswami, and H. Mattoussi, “One-phase synthesis of water-soluble gold nanoparticles with control over size and surface functionalities,” Langmuir, vol. 26, pp. 7604-7613, 2010.
[86] H. Xu, J. Xu, X. Jiang, Z. Zhu, J. Rao, J. Yin, T. Wu, H. Liu, and S. Liu, “Thermosensitive unimolecular micelles surface-decorated with gold nanoparticles of tunable spatial distribution,” Chemistry of Materials, vol. 19, pp. 2489-2494, 2007.
[87] Z. Wang, B. Tan, I. Hussain, N. Schaeffer, M. F. Wyatt, M. Brust, and A. I. Cooper, “Design of polymeric stabilizers for size-controlled synthesis of monodisperse gold nanoparticles in water,” Langmuir, vol. 23, pp. 885-895, 2007.
[88] B. Prasad, S. I. Stoeva, C. M. Sorensen, and K. J. Klabunde, “Digestive-ripening agents for gold nanoparticles: alternatives to thiols,” Chemistry of Materials, vol. 15, pp. 935-942, 2003.
[89] T. K. Sau, A. Pal, N. Jana, Z. Wang, and T. Pal, “Size controlled synthesis of gold nanoparticles using photochemically prepared seed particles,” Journal of Nanoparticle Research, vol. 3, pp. 257-261, 2001.
[90] L. Lu, H. Wang, Y. Zhou, S. Xi, H. Zhang, J. Hu, and B. Zhao, “Seed-mediated growth of large, monodisperse core–shell gold–silver nanoparticles with Ag-like optical properties,” Chemical Communications, pp. 144-145, 2002.
[91] M. Grzelczak, J. Pérez-Juste, P. Mulvaney, and L. M. Liz-Marzán, “Shape control in gold nanoparticle synthesis,” Chemical Society Reviews, vol. 37, pp. 1783-1791, 2008.
[92] W. Zhao, M. A. Brook, and Y. Li, “Design of gold nanoparticle‐based colorimetric biosensing assays,” ChemBioChem, vol. 9, pp. 2363-2371, 2008.
[93] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, “Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system,” Chemical Communications, pp. 801-802, 1994.
[94] A. Frenkel, S. Nemzer, I. Pister, L. Soussan, T. Harris, Y. Sun, and M. Rafailovich, “Size-controlled synthesis and characterization of thiol-stabilized gold nanoparticles,” The Journal of Chemical Physics, vol. 123, p. 184701, 2005.
[95] L. Sun, R. M. Crooks, and V. Chechik, “Preparation of polycyclodextrin hollow spheres by templating gold nanoparticles,” Chemical Communications, pp. 359-360, 2001.
[96] D. V. Leff, P. C. Ohara, J. R. Heath, and W. M. Gelbart, “Thermodynamic control of gold nanocrystal size: experiment and theory,” The Journal of Physical Chemistry, vol. 99, pp. 7036-7041, 1995.
[97] A. Kumar, S. Mandal, S. P. Mathew, P. Selvakannan, A. Mandale, R. V. Chaudhari, and M. Sastry, “Benzene-and anthracene-mediated assembly of gold nanoparticles at the liquid-liquid interface,” Langmuir, vol. 18, pp. 6478-6483, 2002.
[98] A. N. Shipway and I. Willner, “Nanoparticles as structural and functional units in surface-confined architectures,” Chemical Communications, pp. 2035-2045, 2001.
[99] M. Sastry, “Phase transfer protocols in nanoparticle synthesis,” Current Science, vol. 85, pp. 1735-1745, 2003.
[100] S. Underwood and P. Mulvaney, “Effect of the solution refractive index on the color of gold colloids,” Langmuir, vol. 10, pp. 3427-3430, 1994.
[101] J. Yang, J. Y. Lee, and H.-P. Too, “A phase transfer identification of core–shell structures in Au–Ru nanoparticles,” Analytica Chimica Acta, vol. 537, pp. 279-284, 2005.
[102] D. I. Gittins and F. Caruso, “Spontaneous phase transfer of nanoparticulate metals from organic to aqueous media,” Angewandte Chemie International Edition, vol. 40, pp. 3001-3004, 2001.
[103] X. Feng, H. Ma, S. Huang, W. Pan, X. Zhang, F. Tian, C. Gao, Y. Cheng, and J. Luo, “Aqueous-organic phase-transfer of highly stable gold, silver, and platinum nanoparticles and new route for fabrication of gold nanofilms at the oil/water interface and on solid supports,” The Journal of Physical Chemistry B, vol. 110, pp. 12311-12317, 2006.
[104] V. J. Gandubert and R. B. Lennox, “Assessment of 4-(dimethylamino) pyridine as a capping agent for gold nanoparticles,” Langmuir, vol. 21, pp. 6532-6539, 2005.
[105] S. K. Ghosh, “Spectroscopic evaluation of 4-(dimethylamino) pyridine versus citrate as stabilizing ligand for gold nanoparticles,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 371, pp. 98-103, 2010.
[106] A. J. Demello, “Control and detection of chemical reactions in microfluidic systems,” Nature, vol. 442, pp. 394-402, 2006.
[107] C. H. Chang, B. K. Paul, V. T. Remcho, S. Atre, and J. E. Hutchison, “Synthesis and post-processing of nanomaterials using microreaction technology,” Journal of Nanoparticle Research, vol. 10, pp. 965-980, 2008.
[108] F. Jamal, G. Jean Sébastien, P. Maël, P. Edmond, and R. Christian, “Gold nanoparticle synthesis in microfluidic systems and immobilisation in microreactors designed for the catalysis of fine organic reactions,” Microsystem Technologies, vol. 18, pp. 151-158, 2012.
[109] S. Gómez-de Pedro, M. Puyol, and J. Alonso-Chamarro, “Continuous flow synthesis of nanoparticles using ceramic microfluidic devices,” Nanotechnology, vol. 21, p. 415603, 2010.
[110] J. Yue, R. Boichot, L. Luo, Y. Gonthier, G. Chen, and Q. Yuan, “Flow distribution and mass transfer in a parallel microchannel contactor integrated with constructal distributors,” AlChE Journal, vol. 56, pp. 298-317, 2010.
[111] J. Köhler and T. Kirner, “Nanoliter segment formation in micro fluid devices for chemical and biological micro serial flow processes in dependence on flow rate and viscosity,” Sensors and Actuators A: Physical, vol. 119, pp. 19-27, 2005.
[112] S. L. Poe, M. A. Cummings, M. P. Haaf, and D. T. McQuade, “Solving the clogging problem: precipitate-forming reactions in flow,” Angewandte Chemie International Edition, vol. 45, pp. 1544-1548, 2006.
[113] V. Sebastian Cabeza, S. Kuhn, A. A. Kulkarni, and K. F. Jensen, “Size-controlled flow synthesis of gold nanoparticles using a segmented flow microfluidic platform,” Langmuir, vol. 28, pp. 7007-7013, 2012.
[114] S. K. Ghosh and T. Pal, “Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications,” Chemical Reviews, vol. 107, pp. 4797-4862, 2007.
[115] R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, and C. A. Mirkin, “Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles,” Science, vol. 277, pp. 1078-1081, 1997.
[116] Z. Wang, J. Lee, A. R. Cossins, and M. Brust, “Microarray-based detection of protein binding and functionality by gold nanoparticle probes,” Analytical Chemistry, vol. 77, pp. 5770-5774, 2005.
[117] J. Das, M. A. Aziz, and H. Yang, “A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels,” Journal of the American Chemical Society, vol. 128, pp. 16022-16023, 2006.
[118] C. S. Thaxton, D. G. Georganopoulou, and C. A. Mirkin, “Gold nanoparticle probes for the detection of nucleic acid targets,” Clinica Chimica Acta, vol. 363, pp. 120-126, 2006.
[119] X. Mao, Y. Ma, A. Zhang, L. Zhang, L. Zeng, and G. Liu, “Disposable nucleic acid biosensors based on gold nanoparticle probes and lateral flow strip,” Analytical Chemistry, vol. 81, pp. 1660-1668, 2009.
[120] J. S. Lee, M. S. Han, and C. A. Mirkin, “Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA‐functionalized gold nanoparticles,” Angewandte Chemie, vol. 119, pp. 4171-4174, 2007.
[121] J. M. Slocik, J. S. Zabinski, D. M. Phillips, and R. R. Naik, “Colorimetric response of peptide‐functionalized gold nanoparticles to metal ions,” Small, vol. 4, pp. 548-551, 2008.
[122] C. D. Medley, J. E. Smith, Z. Tang, Y. Wu, S. Bamrungsap, and W. Tan, “Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells,” Analytical Chemistry, vol. 80, pp. 1067-1072, 2008.
[123] B. D. Chithrani, A. A. Ghazani, and W. C. Chan, “Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,” Nano Letters, vol. 6, pp. 662-668, 2006.
[124] H. C. Lee, T. H. Chen, W. L. Tseng, and C. H. Lin, “Novel core etching technique of gold nanoparticles for colorimetric dopamine detection,” Analyst, vol. 137, pp. 5352-5357, 2012.
[125] S. Durocher, A. Rezaee, C. Hamm, C. Rangan, S. Mittler, and B. Mutus, “Disulfide-linked, gold nanoparticle based reagent for detecting small molecular weight thiols,” Journal of the American Chemical Society, vol. 131, pp. 2475-2477, 2009.
[126] M. C. Daniel and D. Astruc, “Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,” Chemical Reviews, vol. 104, pp. 293-346, 2004.
[127] S. Eustis and M. A. El. Sayed, “Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes,” Chemical Society Reviews, vol. 35, pp. 209-217, 2006.
[128] T. G. Schaaff and R. L. Whetten, “Controlled etching of Au: SR cluster compounds,” The Journal of Physical Chemistry B, vol. 103, pp. 9394-9396, 1999.
[129] H. Qian, M. Zhu, E. Lanni, Y. Zhu, M. E. Bier, and R. Jin, “Conversion of polydisperse Au nanoparticles into monodisperse Au25 nanorods and nanospheres,” The Journal of Physical Chemistry C, vol. 113, pp. 17599-17603, 2009.
[130] J. M. Pettibone and J. W. Hudgens, “Gold cluster formation with phosphine ligands: etching as a size-selective synthetic pathway for small clusters?,” ACS Nano, vol. 5, pp. 2989-3002, 2011.
[131] Y. Shichibu, Y. Negishi, H. Tsunoyama, M. Kanehara, T. Teranishi, and T. Tsukuda, “Extremely high stability of glutathionate‐protected Au25 Clusters against core etching,” Small, vol. 3, pp. 835-839, 2007.
[132] T. Selvaraju and R. Ramaraj, “Simultaneous determination of ascorbic acid, dopamine and serotonin at poly (phenosafranine) modified electrode,” Electrochemistry Communications, vol. 5, pp. 667-672, 2003.
[133] S. Arreguin, P. Nelson, S. Padway, M. Shirazi, and C. Pierpont, “Dopamine complexes of iron in the etiology and pathogenesis of Parkinson’s disease,” Journal of Inorganic Biochemistry, vol. 103, pp. 87-93, 2009.
[134] C. M. Chen, G. L. Chang, and C. H. Lin, “Performance evaluation of a capillary electrophoresis electrochemical chip integrated with gold nanoelectrode ensemble working and decoupler electrodes,” Journal of Chromatography A, vol. 1194, pp. 231-236, 2008.
[135] A. Hermans, R. B. Keithley, J. M. Kita, L. A. Sombers, and R. M. Wightman, “Dopamine detection with fast-scan cyclic voltammetry used with analog background subtraction,” Analytical Chemistry, vol. 80, pp. 4040-4048, 2008.
[136] Y. Sun, J. Fei, J. Hou, Q. Zhang, Y. Liu, and B. Hu, “Simultaneous determination of dopamine and serotonin using a carbon nanotubes-ionic liquid gel modified glassy carbon electrode,” Microchimica Acta, vol. 165, pp. 373-379, 2009.
[137] Y. R. Kim, S. Bong, Y. J. Kang, Y. Yang, R. K. Mahajan, J. S. Kim, and H. Kim, “Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes,” Biosensors and Bioelectronics, vol. 25, pp. 2366-2369, 2010.
[138] P. Uutela, R. Reinila, K. Harju, P. Piepponen, R. A. Ketola, and R. Kostiainen, “Analysis of intact glucuronides and sulfates of serotonin, dopamine, and their phase I metabolites in rat brain microdialysates by liquid chromatography− tandem mass spectrometry,” Analytical Chemistry, vol. 81, pp. 8417-8425, 2009.
[139] W. Sun, Y. Duan, Y. Li, T. Zhan, and K. Jiao, “Electrochemistry and Voltammetric Determination of Adenosine with N-Hexylpyridinium Hexafluorophosphate Modified Electrode,” Electroanalysis, vol. 21, pp. 2667-2673, 2009.
[140] S. J. Clarke, C. Hollmann, F. A. Aldaye, and J. L. Nadeau, “Effect of ligand density on the spectral, physical, and biological characteristics of CdSe/ZnS quantum dots,” Bioconjugate Chemistry, vol. 19, pp. 562-568, 2008.
[141] Y. Hu, X. Wu, Y. Su, X. Hou, and J. Zhang, “Capillary zone electrophoresis hyphenated with laser-induced fluorescence detection for sensitive determination of noradrenaline and dopamine with 5-(4, 6-dichloro-s-triazin-2-ylamino) fluorescein as fluorescent label,” Microchimica Acta, vol. 166, pp. 289-294, 2009.
[142] S. Zhao, Y. Huang, M. Shi, R. Liu, and Y. M. Liu, “Chemiluminescence resonance energy transfer-based detection for microchip electrophoresis,” Analytical Chemistry, vol. 82, pp. 2036-2041, 2010.
[143] M. Moini, C. L. Schultz, and H. Mahmood, “CE/electrospray ionization-MS analysis of underivatized d/l-amino acids and several small neurotransmitters at attomole levels through the use of 18-crown-6-tetracarboxylic acid as a complexation reagent/background electrolyte,” Analytical Chemistry, vol. 75, pp. 6282-6287, 2003.
[144] N. Jia, Z. Wang, G. Yang, H. Shen, and L. Zhu, “Electrochemical properties of ordered mesoporous carbon and its electroanalytical application for selective determination of dopamine,” Electrochemistry Communications, vol. 9, pp. 233-238, 2007.
[145] P. Y. Chen, R. Vittal, P. C. Nien, and K. C. Ho, “Enhancing dopamine detection using a glassy carbon electrode modified with MWCNTs, quercetin, and Nafion®,” Biosensors and Bioelectronics, vol. 24, pp. 3504-3509, 2009.
[146] S. R. Ali, Y. Ma, R. R. Parajuli, Y. Balogun, W. Y. C. Lai, and H. He, “A nonoxidative sensor based on a self-doped polyaniline/carbon nanotube composite for sensitive and selective detection of the neurotransmitter dopamine,” Analytical Chemistry, vol. 79, pp. 2583-2587, 2007.
[147] A. Liu, I. Honma, and H. Zhou, “Simultaneous voltammetric detection of dopamine and uric acid at their physiological level in the presence of ascorbic acid using poly (acrylic acid)-multiwalled carbon-nanotube composite-covered glassy-carbon electrode,” Biosensors and Bioelectronics, vol. 23, pp. 74-80, 2007.
[148] N. F. Atta, A. Galal, and R. A. Ahmed, “Poly (3, 4-ethylene-dioxythiophene) electrode for the selective determination of dopamine in presence of sodium dodecyl sulfate,” Bioelectrochemistry, vol. 80, pp. 132-141, 2011.
[149] B. K. Swamy and B. J. Venton, “Carbon nanotube-modified microelectrodes for simultaneous detection of dopamine and serotonin in vivo,” Analyst, vol. 132, pp. 876-884, 2007.
[150] Y. Zheng, Y. Wang, and X. Yang, “Aptamer-based colorimetric biosensing of dopamine using unmodified gold nanoparticles,” Sensors and Actuators B: Chemical, vol. 156, pp. 95-99, 2011.
[151] H. Gai, Y. Li, and E. S. Yeung, "Optical detection systems on microfluidic chips," Microfluidics, vol. 304, pp. 171-201, 2011.
[152] M. E. Bosch, A. J. R. Sánchez, F. S. Rojas, and C. B. Ojeda, “Recent development in optical fiber biosensors,” Sensors, vol. 7, pp. 797-859, 2007.
[153] S. Bargiel, A. Górecka Drzazga, J. A. Dziuban, P. Prokaryn, M. Chudy, A. Dybko, and Z. Brzózka, “Nanoliter detectors for flow systems,” Sensors and Actuators A: Physical, vol. 115, pp. 245-251, 2004.
[154] T. Noda, H. Takao, K. Yoshioka, N. Oku, M. Ashiki, K. Sawada, K. Matsumoto, and M. Ishida, “Performance of absorption photometry microchip for blood hemoglobin measurement integrated with processing circuits and Si (110) 45 mirrors,” Sensors and Actuators B: Chemical, vol. 119, pp. 245-250, 2006.
[155] D. Onoshima, J. Wang, M. Aki, K. Arinaga, N. Kaji, M. Tokeshi, S. Fujita, N. Yokoyama, and Y. Baba, “A deep microfluidic absorbance detection cell replicated from a thickly stacked SU-8 dry film resist mold,” Analytical Methods, vol. 4, pp. 4368-4372, 2012.
[156] C. H. Lin and G. B. Lee, “Micromachined flow cytometers with embedded etched optic fibers for optical detection,” Journal of Micromechanics and Microengineering, vol. 13, p. 447, 2003.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code