Responsive image
博碩士論文 etd-0712114-141227 詳細資訊
Title page for etd-0712114-141227
論文名稱
Title
應用於雷達頻段具有高隔離度與增益加強結構之多重輸出輸入天線
A C-band MIMO Antenna with Isolation and Gain Enhancement for MIMO Radar Application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
49
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-01
繳交日期
Date of Submission
2014-08-12
關鍵字
Keywords
隔離度、覆板、增益加強、寬頻、多重輸出輸入天線
gain enhancement, superstrate, isolation, wideband, MIMO
統計
Statistics
本論文已被瀏覽 5660 次,被下載 816
The thesis/dissertation has been browsed 5660 times, has been downloaded 816 times.
中文摘要
近年來,多重輸出輸入通訊天線的研究在行動裝置及雷達科技的應用引起相當大的關注。在雷達科技的應用上,天線需要能寬頻操作以及好的天線增益。於本論文中,我們設計了應用於C-頻段(4-8GHz)雷達頻段的寬頻多重輸出輸入天線,並且引入reaction theorem提昇寬頻隔離度,接著藉由加入特殊設計的覆板,使天線的增益上升。

首先,我們設計了使用共平面波導饋入的多重輸出輸入天線,此種饋入方法的優點在於寬頻阻抗匹配容易。而我們設計的天線結構的概念近似於接地面於兩天線間突起的結構,天線間的隔離度已有不錯的表現,而為了補足雷達頻段內隔離度不足的部份頻段,我們引入了reaction theorem的原理應用,藉由創造等效磁流進行感應電壓的抑制,藉此達成寬頻多重輸出輸入天線的設計。

接著,為了提升雷達頻段內天線的增益,我們引入了三層設計的覆板。藉由分析天線上xz, yz平面上的電場,在覆板上相對應的位置加入金屬線結構,藉此加強天線增益。比起一般的覆板設計,三層設計的覆板擺放的位置距離天線僅四分之一波長,加強的增益約為1~3dB。
Abstract
Recently, the concept of MIMO communications has created considerable attention both in mobile communications and advanced radar technology. In MIMO radar technology, the antenna should be capable of operating in wideband and high gain. In this thesis, we design a C-Band MIMO antenna for MIMO radar applications by introducing reaction theorem to enhance wideband isolation, and adding superstrates with special designs to improve gain enhancement.

First, we propose coplanar waveguide (CPW) to feed multi-input multi-output (MIMO) antenna. We choose CPW feeding because it provides the advantage of wideband impedance matching. Our antenna structure is similar to protruding structure, which provides isolation enhancement. In order to further improve the isolation over the desired frequency band, the reaction theorem is applied. By introducing equivalent magnetic current, the induced voltage can be suppressed. So that wideband MIMO antenna design can be done.

In order to enhance the gain over C-band, three stacked superstrates are proposed. By analyzing the electric field on the xz, yz plane of the antenna, we create a metal strip on the corresponding location on the superstrate to enhance gain. Compared with common superstrate, three stacked superstrates are placed only at a distance of 0.25λ, with a gain enhancement of 1~3 dB.
目次 Table of Contents
論文審定書........................................................................................................................i
致謝...................................................................................................................................ii
Abstract............................................................................................................................iii
摘要..................................................................................................................................iv
目錄...................................................................................................................................v
圖次.................................................................................................................................vii
表次..................................................................................................................................ix
第一章 序論.....................................................................................................................1
1.1 研究動機及背景.......................................................................................1
1.2 研究方法...................................................................................................2
1.3 相關研究概況...........................................................................................2
1.4 論文大綱...................................................................................................3
第二章 多重輸出輸入天線設計.....................................................................................4
2.1 多重輸出輸入天線設計...........................................................................4
2.2 多重輸出輸入天線隔離度設計...............................................................8
2.3 實作與模擬探討.....................................................................................12
第三章 多層覆板設計...................................................................................................18
3.1 覆板基本介紹及其應用.........................................................................18
3.2 多層覆板原理與設計.............................................................................20
3.3 實作與模擬探討.....................................................................................30
第四章 結論...................................................................................................................35
參考文獻.........................................................................................................................36
參考文獻 References
[1] D. Gesbert, M. Shafi, D. S. Shiu, P. J. Smith, and A. Naguib, “From theory to practice: an overview of MIMO space-time coded wireless systems,” IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 281-301, April 2003.
[2] E. Fishler, A. Haimovich, R. Blum, D. Chizhik, L. Cimini, and R. Valenzuela, “MIMO radar: An idea whose time has come,” in Proc. IEEE Radar Conf., pp. 71-78, April 2004.
[3] Jian Li and Petre Stoica, MIMO Radar Signal Processing, New Jersey: John Wiley & Sons, 2009.
[4] H. He, P. Stoica, and J. Li, “Wideband MIMO systems: signal design for transmit beampattern synthesis,” IEEE Trans. Signal Process., vol. 59, no. 2, pp. 618–628, Feb., 2011.
[5] H. He, P. Stoica, and J. Li, ”Designing unimodular sequence sets with good correlations – including an application to MIMO radar,” IEEE Trans. Signal Process., vol. 57, no. 11, Nov., 2009.
[6] J. Zhang, H. Wang, and X.Zhu, “Adaptive waveform design for separated transmit/receive ULA-MIMO radar,” IEEE Trans. Signal Process., vol. 58, no. 9, September 2010.
[7] H. Chen, X. Li, W. Jiang, and Z. Zhuang, “MIMO radar sensitivity analysis of antenna position for direction finding,” IEEE Trans. Signal Process., vol. 60, no. 10, pp. 5201-5216, October 2012.
[8] H. Chen, X. Li, and Z. Zhuang, “Antenna geometry conditions for MIMO radar with uncoupled direction estimation,” IEEE Trans. Antennas Propag., vol. 60, no. 7, pp. 3455-3465, July 2012.
[9] D. Wang, X. Ma, A. Chen, and Y. Su, “High-resolution imaging using a wideband MIMO radar system with two distributed arrays,” IEEE Trans. Image Process., vol. 19, no. 5, pp. 1280-1289, May 2010.
[10] IEEE Xplore® DIGITAL LIBRARY, [Online]. Available: http://www.ieeexplore.ieee.org/
[11] J. Dong, Q. Li, and W. Guo, “A combinatorial method for antenna array design in minimum redundancy MIMO radars,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 1150-1153, 2009.
[12] W. J. Chen and R. M. Narayanan, “Antenna placement for minimizing target localization error in UWB MIMO noise radar,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 135-138, 2011.
[13] F. Belfiori, W. V. Rossum, and P. Hoogeboom, “Coherent MIMO array design with periodical physical element structures,” IEEE Antennas Wireless Propag. Lett., vol. 10, pp. 1134-1144, 2011.
[14] H. Chen, J. Yang, W. Zhou, H. Wang, and X. Li, “On unique localization of multiple targets by MIMO radars,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 949-952, 2012.
[15] X. Zhuge and A. G. Yarovoy, “Sparse multiple-input multiple-output arrays for high-resolution near-field ultra-wideband imaging,” IET Microw. Antennas Propag., vol.5, iss.13, pp. 1552-1562, 2011.
[16] F. Gu, L. Chi, Q. Zhang, and F. Zhu, “Single snapshot imaging method in multiple-input multiple-output radar with sparse antenna array,” IET Radar Sonar Nav., vol. 7, iss. 5, pp. 535-543, June 2013.
[17] D. M. Pozar, “Microstrip antennas,” Proc. IEEE, vol. 80, no. 1, pp. 70-91, 1992.
[18] K. F. Lee, K. M. Luk, K. F. Tong, S. M. Shum, T. Huynh, and R. Q. Lee, “Experimental and simulation studies of the coaxially fed U-slot rectangular patch antenna,” IET Proc. Microw. Antennas Propag., vol. 144, no. 5, pp. 354-358, 1997.
[19] K. M. Luk, C. L. Mak, Y. L. Chow, and K. F. Lee, “Broadband microstrip patch antenna,” Electron. Lett., vol. 34, pp. 1442-1443, 1998.
[20] K. L. Wong, S. W. Su, and Y. L. Kuo, “A printed ultra-wideband diversity monopole antenna,” Microw. Opt. Technol. Lett., vol. 38, pp.257-259, Aug., 2003.
[21] T. S. P. See and Z. N. Chen, “An ultrawideband diversity antenna,” IEEE Trans. Antennas and Propag., vol. 57, no. 6, pp.1597-1605, Jun., 2009.
[22] M. Sonkki and E. Salonen, “Low mutual coupling between monopole antennas by using two λ/2 slots,” IEEE Antennas Wireless Propag. Lett., vol. 9, pp. 138-141, 2010.
[23] C. Y. Chiu, C. H. Cheng, R.D. Murch and C. R. Rowell, “Reduction of mutual coupling between closely-packed antenna elements” IEEE Trans. Antennas and Propag., vol. 55, no. 6, pp. 1732-1738, June 2007.
[24] S. W. Su, C. T. Lee, and F. S. Chang, “Printed MIMO-antenna system using neutralization-line technique for wireless USB-dongle applications” IEEE Trans. Antennas and Propag., vol. 60, no. 2, pp. 456-463, Febuary 2012.
[25] F. Yang and Y. Rahamt-Samii, “Microstrip antennas integrated with electromagnetic band-gap(EBG) structures: A low mutual coupling design for array applications,” IEEE Trans. Antennas and Propag., vol. 51, no. 10, pp. 2936-2946, October 2003.
[26] J. H. Richnok, “A reaction theorem and its application to antenna impedance calculations”, IRE Trans. Antennas and Propag., vol.9, no. 6, pp. 515-520, Nov.,1961.
[27] V. H. Rumsey, “Reaction concept in electromagnetic theory,” Phys. Rev., vol. 17, pp.1483–1491, June 15, 1954.
[28] N. Alexopoulos and D. Jackson, “Fundamental superstrate (cover) effects on printed circuit antennas,” IEEE Trans. Antennas Propag., vol. 32, no. 8, pp. 807–816, Aug. 1984.
[29] D. Jackson and N. Alexopoulos, “Gain enhancement methods for printed circuit antennas,” IEEE Trans. Antennas Propag. , vol. 33, no. 9, pp. 976–987, Sep. 1985.
[30] D. R. Jackson, A. A. Oliner, and A. Ip, “Leaky-wave propagation and radiation for a narrow-beam multiple-layer dielectric structure,” IEEE Trans. Antennas Propag., vol. 41, no. 3, pp. 344–348, Mar. 1993.
[31] T. Zhao, D. R. Jackson, J. T. Williams, H. Y. D. Yang, and A. A. Oliner, “2-d periodic leaky-wave antennas-Part I: Metal patch design,” IEEE Trans. Antennas Propag., vol. 53, no. 11, pp. 3505–3514, Nov. 2005.
[32] G. Lovat, P. Burghignoli, and D. R. Jackson, “Fundamental properties and optimization of broadside radiation from uniform leaky-wave antennas,” IEEE Trans. Antennas Propag., vol. 54, no. 5, pp. 1442–1452, May 2006.
[33] A. Foroozesh and L. Shafai, “Effects of artificial magnetic conductors in the design of low-profile high-gain planar antennas with high-permittivity dielectric superstrate,” IEEE Antenna Wireless Propag. Lett., vol. 8, pp. 10–13, 2009.
[34] H. Attia, L. Yousefi, M. M. Bait-Suwailam, M. S. Boybay, and O. M. Ramahi, “Enhanced-gain microstrip antenna using engineered magnetic superstrates,” IEEE Antenna Wireless Propag. Lett., vol. 8, pp. 1198–1201, 2009.
[35] A. Foroozesh and L. Shafai, “Investigation into the effects of the patch-type fss superstrate on the high-gain cavity resonance antenna design,” IEEE Trans. Antennas Propag., vol. 58, no. 2, pp. 258–270, Feb. 2010.
[36] H. Vettikalladi, O. Lafond, and M. Himdi, “High-efficient and high-gain superstrate antenna for 60-GHz indoor communication,” IEEE Antenna Wireless Propag. Lett., vol. 8, pp. 1422–1425, 2009.
[37] R. Mittra, Y. Li, and K. Yoo, “A comparative study of directivity enhancement of microstrip patch antennas with using three different superstrates,” Microwave Opt. Tech. Lett., vol. 52, no. 2, pp. 327–331, Feb. 2010.

[38] Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, “Application of electro-magnetic bandgap (EBG) superstrates with controllable defects for a class of patch antennas as spatial angular filters,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 224–235, Jan. 2005.
[39] H. Attia and O. M. Ramahi, “EBG superstrate for gain and bandwidth enhancement of microstrip array antennas,” in Pro. IEEE AP-S Int. Symp. Antennas Propag., San Diego, CA, 2008, pp. 1–4.
[40] H. Attia, L. Yousefi, O. Siddiqui, and O. M. Ramahi, “Analytical formulation of the radiation field of printed antennas in the presence of artificial magnetic superstrates,” in Proc. META’10, the 2nd Int. Conf. on Metamaterials, Photonic Crystals and Plasmonics, Cairo, Egypt, 2010, pp. 587–591.
[41] M. A. AI-Tarifi, D. E. Anagnostou, A. K. Amert, and K. W. Whites, “Bandwidth enhancement of the resonant cavity antenna by using two dielectric superstrates”, IEEE Trans. Antennas Propag., vol. 61, no. 4, Apr., 2013.
[42] D. Li, Z. Szabó, X. Qing, E. P. Li, and Z. N. Chen, “A high gain antenna with an optimized metamaterial inspired superstrate”, IEEE Trans. Antennas Propag., vol. 60, no. 12, pp. 6018-6023, Dec., 2012
[43] T. N. Chang and J. M. Lin, “Enhanced return-loss and flat-gain bandwidths for microstrip patch antenna,” IEEE Trans. Antennas and Propag., vol. 59, no. 11, pp.4322-4325, Nov., 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code