Responsive image
博碩士論文 etd-0712114-142227 詳細資訊
Title page for etd-0712114-142227
論文名稱
Title
奈米結構之石墨烯-鈷錳金屬氧化物混成材料之合成及電化學催化應用
Synthesis of Nanostructured Graphene-Cobalt Manganese Oxide Hybrids for Electrochemical Catalysis Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-27
繳交日期
Date of Submission
2014-08-12
關鍵字
Keywords
電催化、混成、石墨烯、鈷錳金屬氧化物、多重混價
electrochemical catalysis, graphene, mixed-valence, cobalt manganese oxide, hybridization
統計
Statistics
本論文已被瀏覽 5724 次,被下載 185
The thesis/dissertation has been browsed 5724 times, has been downloaded 185 times.
中文摘要
利用簡單之氧化還原方法將錳金屬摻雜於鈷氧化物中並形成高表面積之三維奈米結構鈷錳金屬氧化物(CMO),具有元素均勻分布及多重價態混價性質使其具有高導電度特性(1.5 Χ 10-2 S cm-1),其導電度相較於一般鈷氧化物提升將近一千倍。利用溫度與時間作為變因,延長反應時間可使鈷錳氧化物之粒徑大小明顯增加,該金屬氧化物之表面奈米結構因溫度上升而有明顯變化,且在反應溫度為200 oC時有雜相產生,故推測具兩個不同生長機制存在此氧化還原過程中。
石墨烯具高表面積與導電度之特性,常與金屬氧化物反應形成混成材料,且該混成材料可提升金屬氧化物之催化效能。在金屬氧化物經過表面修飾後,添加氧化石墨烯與金屬氧化物混成後再以水熱還原為石墨烯-鈷錳金屬氧化物(G-CMO#1, G-CMO#2, G-CMO#3)。此外針對不同石墨烯含量在過氧化氫還原的效能上有不同的效果,相較於CMO 在過氧化氫偵測之靈敏度(0.23 μA mM-1)與線性範圍(0.5 mM -30 mM),石墨烯混成樣品(G-CMO#3)大幅提升過氧化氫偵測的靈敏度(11.01 μA mM-1),但較小的線性範圍(5 μM -0.5 mM)。在本篇推測乃因石墨烯與CMO之奈米結構之間的關係以及石墨烯的含量所導致之差異。
Abstract
A simple redox reaction was successfully conducted for the controlled synthesis of 3D flower-like cobalt manganese oxides (CMO) accompanied by unique Y-shaped subunits with a homogeneous elemental distribution and mixed-valence features. This reaction is attributed to the highly conductive and reductive properties of electrochemical catalysis for sensing hydrogen peroxide and oxygen reduction reactions (ORR). The diameters and the nanoflakes of the CMO spheres increased in size with a prolonged reaction time and increased temperatures. In addition, the nanowire impurities were obtained with a reaction temperature of 200oC for 24 hours. The results indicate that there are two different growth paths that are dependent on the reaction temperatures.
Graphene with high conductivities and surface areas was used to generate 3D flower-like graphene-cobalt manganese oxide composites (G-CMO) for optimal H2O2 and ORR performance. First, the surface of the CMO materials was modified so that it possessed a counter charge to attract graphene oxide (GO). Next, the as-obtained GO-CMO composites were treated hydrothermally to generate the reduced graphene oxide (G-CMO) composites. The sensitivity of the optimal composite G-CMO#3 (11.01 μA mM-1) is much higher than that of CMO. The linear range of G-CMO#3 (5 M to 0.5 mM) is shorter than that of CMO (0.5 mM -30 mM). These results may be due to the maturity of the nanostructures on CMO and the graphene content of the G-CMO composites.
目次 Table of Contents
CONTENTS
論文審定書 i
Acknowledgement ii
摘要 iii
Abstract iv
CONTENTS v
List of Figures viii
List of Tables x
CHAPTER 1. Introduction 1
1.1. Controlled synthesis in binary metal oxides 1
1.2. Redox method for binary metal oxides 1
1.3. Applications of cobalt oxides 2
1.4. Graphene hybridization 4
1.4.1. Purpose of using graphene 4
1.4.2. Methods of preparing graphene 5
1.4.3. Synthesis of the graphene-metal oxide composites 8
1.5. Novelty and importance in this research 8
CHAPTER 2. Experimental Section 9
2.1. Reagents 9
2.2. Synthesis 9
2.2.1. 3D Flower-like Cobalt - Manganese Oxide (CMO) 9
2.2.2. Cobalt – Chromium Oxide Hydroxide (CCOH) 10
2.2.3. Graphene Oxide (GO) 11
2.2.4. G-CMO nanocomposites 11
2.3. Characterization 12
2.3.1. Scanning electron microscopy (SEM) studies 12
2.3.2. Transmission electron microscopy (TEM) studies 12
2.3.3. Crystalline analysis 13
2.3.4. BET studies 13
2.3.5. TGA analysis 13
2.3.6. Conductivity 14
2.3.7. Raman spectroscopy studies 14
2.3.8. X-ray photoelectron spectroscopy (XPS) studies 14
2.4. Electrochemical measurement 14
2.4.1. Preparation of Material-modified Electrode 14
2.4.2. H2O2 Sensing Experiments 15
2.4.3. Oxygen reduction reaction 16
CHAPTER 3. Results 17
3.1. Synthesis and Growth Path of CMOH and CMO 17
3.1.1. Nanostructured Morphology and Crystal Structure 17
3.1.2. Precursor Ratio Variation 18
3.1.3. Time-dependent and Temperature-dependent Experiments 24
3.2. Synthesis of CCOH with redox method 32
3.3. Graphene Hybridization and Effects of Graphene Oxide 34
3.3.1. Synthesis and Characterization 34
3.3.2. Physical properties of CMO and G-CMO materials 42
3.4. Electrochemical activities of CMO and G-CMO materials 44
3.4.1. Candidate of G-CMO Materials 44
3.4.2. Electrochemical activities of CMO and G-CMO materials for sensing H2O2 44
3.4.3. Synergistic effect of G-CMO 45
3.4.4. Nanostructure effect of CMO for hybridization 46
CHAPTER 4. Discussion 51
4.1. Growth path and mechanism of CMO 51
4.2. Conductivity enhancement with dopant and multiple mixed-valence of CMO 52
4-3. Effect graphene of content in G-CMO materials 53
4-4. Nanostructure effect of CMO for hybridizing with graphene 54
CHAPTER 5. Conclusion 55
Reference 56
APPENDIX 67




List of Figures
Fig. 1 Schematic illustration of microwave-assisted reflux equipment. 3
Fig. 2 The schematic of precipitation method to form cobalt oxides. 3
Fig. 3 Schematic illustration of micromechanical cleavage to form graphene. 6
Fig. 4 Schematic illustration of CVD method to form graphene. 6
Fig. 5 Schematic illustration of liquid phase exfoliation to form graphene. 7
Fig. 6 Schematic illustration of the Hummer’s method to form graphene. 7
Fig. 7 The SEM images of cobalt manganese oxides.. 20
Fig. 8 The XRD patterns of the CMO products. 20
Fig. 9 The TEM images of CMO products. 21
Fig. 10 The EDXS mapping of CMO. 22
Fig. 11 The XPS spectra of CMOH and CMO.. 23
Fig. 12 The SEM images of CMOH with different reaction time. 27
Fig. 13 The XRD patterns of CMOH with different reaction time. 28
Fig. 14 The SEM images of CMOH at different reaction temperatures. 29
Fig. 15 The SEM of CMOH-200. 30
Fig. 16 The elemental analysis of CMOH-200. 31
Fig. 17 The characterization results of CCOH. 33
Fig. 18 The SEM images of different graphene content of G-CMO materials. 37
Fig. 19 The TEM images of G-CMO materials. 38
Fig. 20 The XRD and SAED patterns of G-CMO. 39
Fig. 21 The Raman and XPS spectra of rGO, GO-CMO and G-CMO. 40
Fig. 22 TGA of CMO (black line), G-CMO#1 (red line), G-CMO#2 (blue line), G-CMO#3 (green line), and rGO (blue-dash line). 41
Fig. 23 Cyclic voltammograms (CVs) of different electrodes in a 1mM of H2O2 with a 0. 1 M PBS. 47
Fig. 24 The electrochemical studies of G-CMO materials for H2O2 sensing. 48
Fig. 25 The interference studies of GCMO. 49
Fig. 26 The synergestical effect of G-CMO.. 50
Fig. 27 TEM images and electrochemical sensing performance of G-CMO. 50

List of Tables
Table 1 The elemental analyses of CMOH with different Co-to-Mn ratios. 21
Table 2 The summary of weight loss of rGO covered on surface of CMO.. 41
Table 3 The summary of surface areas, conductivities, and chemical compositions of CMO samples. 43
Table 4 The summary of conductivity and surface areas of G-CMO samples. 43
參考文獻 References
Reference
(1) Wang, Z.; Zhou, L.; David Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903.
(2) Yin, Y.; Rioux, R. M.; Erdonmez, C. K.; Hughen, S.; Somorjai, G. A.; Alivisatos, A. P. Formation of hollow nanocrystals through the nanoscale Kirkendal effect. Science 2004, 304, 711.
(3) Li, J.; Xiong, S.; Li, X.; Qian, Y. A facile route to synthesize multiporous MnCo2O4 and CoMn2O4 spinel quasi-hollow spheres with improved lithium storage properties. Nanoscale 2013, 5, 2045.
(4) Peng, X. Mechanisms for the shape-control and shape-evolution of colloidal semiconductor nanocrystals. Adv. Mater. 2003, 15, 459.
(5) Xiao, X.; Liu, X.; Zhao, H.; Chen, D.; Liu, F.; Xiang, J.; Hu, Z.; Li, Y. Facile shape control of Co3O4 and the effect of the crystal plane on electrochemical performance. Adv. Mater. 2012, 24, 5762.
(6) Habas, S. E.; Lee, H.; Radmilovic, V.; Somorjai, G. A.; Yang, P. Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 2007, 6, 692.
(7) Li, Y.; Cai, W.; Cao, B.; Duan, G.; Sun, F.; Li, C.; Jia, L. Two-dimensional hierarchical porous silica film and its tunable superhydrophobicity. Nanotechnology 2006, 17, 238.
(8) Li, Y.; Shen, W. Morphology-dependent nanocatalysts: rod-shaped oxides. Chem. Soc. Rev. 2014, 43, 1543.
(9) Li, W.-N.; Zhang, L.; Sithambaram, S.; Yuan, J.; Shen, X.-F.; Aindow, M.; Suib, S. L. Shape evolution of single-crystalline Mn2O3 using a solvothermal approach.
J. Phys. Chem. C 2007, 111, 14694.
(10) He, T.; Chen, D.; Jiao, X.; Wang, Y. Co3O4 Nanoboxes: Surfactant-templated fabrication and microstructure characterization. Adv. Mater. 2006, 18, 1078.
(11) He, T.; Chen, D.; Jiao, X.; Xu, Y.; Gu, Y. Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size. Langumir 2004, 20, 8404.
(12) Feng, J.; Zeng, H. C. Size-controlled growth of Co3O4 nanocubes. Chem. Mater. 2003, 15, 2829.
(13) Tseng, Y.-H.; Liu, H.-Y.; Liu, M.-H.; Chen, Y.-F.; Mou, C.-Y. Biomimetic synthesis of nacrelike faceted mesocrystals of ZnO−Gelatin composite. J. Phys. Chem. C 2009, 113, 18053.
(14) Zhou, K.; Li, Y. Catalysis based on nanocrystals with well-defined facets. Angew. Chem. Int. Ed. 2012, 51, 602.
(15) Li, Y.; Hasin, P.; Wu, Y. NixCo3−xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926.
(16) Zhang, Y.; Ma, M.; Yang, J.; Su, H.; Huang, W.; Dong, X. Selective synthesis of hierarchical mesoporous spinel NiCo2O4 for high-performance supercapacitors. Nanoscale 2014, 6, 4303.
(17) Liu, X.; Qiu, G.; Li, X. Shape-controlled synthesis and properties of uniform spinel cobalt oxide nanocubes. Nanotechnology 2005, 16, 3035.
(18) Chen, C.-H.; Abbas, S. F.; Morey, A.; Sithambaram, S.; Xu, L.-P.; Garces, H. F.; Hines, W. A.; Suib, S. L. Controlled synthesis of self-assembled metal oxide hollow spheres via tuning redox potentials: versatile nanostructured cobalt oxides. Adv. Mater. 2008, 20, 1205.
(19) Pang, H.; Gao, F.; Chen, Q.; Liu, R.; Lu, Q. Dendrite-like Co3O4 nanostructure and its applications in sensors, supercapacitors and catalysis. Dalton Trans. 2012, 41, 5862.
(20) Lei, Y.; Li, J.; Wang, Y.; Gu, L.; Chang, Y.; Yuan, H.; Xiao, D. Supercapacitor studies on NiO nanoflakes synthesized through a microwave route. ACS Appl. Mater. Interfaces 2014, 6, 1773.
(21) Li, W.-Y.; Xu, L.-N.; Chen, J. Co3O4 nanomaterials in lithium-ion batteries and gas sensors. Adv. Funct. Mater. 2005, 15, 851.
(22) Fu, C.; Li, G.; Luo, D.; Huang, X.; Zheng, J.; Li, L. One-step calcination-free synthesis of multicomponent spinel assembled microspheres for high-performance anodes of Li-ion batteries: A Case Study of MnCo2O4. ACS Appl. Mater. Interfaces 2014, 6, 2439.
(23) Lavela, P.; Tirado, J. L.; Vidal-Abarca, C. Sol–gel preparation of cobalt manganese mixed oxides for their use as electrode materials in lithium cells. Electrochimi. Acta 2007, 52, 7986.
(24) Jiao, F.; Frei, H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew. Chem. Int. Ed. 2009, 48, 1841.
(25) Wee, T. L.; Sherman, B. D.; Gust, D.; Moore, A. L.; Moore, T. A.; Liu, Y.; Scaiano, J. C. Photochemical synthesis of a water oxidation catalyst based on cobalt nanostructures. J. Am. Chem. Soc. 2011, 133, 16742.
(26) Zhu, J.; Gao, Q. Mesoporous MCo2O4 (M = Cu, Mn and Ni) spinels: structural replication, characterization and catalytic application in CO oxidation. Microporous Mesoporous Mater. 2009, 124, 144.
(27) Wang, D.; Chen, X.; Evans, D. G.; Yang, W. Well-dispersed Co3O4/Co2MnO4 nanocomposites as a synergistic bifunctional catalyst for oxygen reduction and oxygen evolution reactions. Nanoscale 2013, 5, 5312.
(28) Hou, C.; Xu, Q.; Yin, L.; Hu, X. Metal-organic framework templated synthesis of Co3O4 nanoparticles for direct glucose and H2O2 detection. Analyst 2012, 137, 5803.
(29) Qi, X.; Gao, H.; Zhang, Y.; Wang, X.; Chen, Y.; Sun, W. Electrochemical DNA biosensor with chitosan-Co3O4 nanorod-graphene composite for the sensitive detection of staphylococcus aureus nuc gene sequence. Bioelectrochemistry 2012, 88, 42.
(30) Mu, J.; Zhang, L.; Zhao, M.; Wang, Y. Co3O4 nanoparticles as an efficient catalase mimic: Properties, mechanism and its electrocatalytic sensing application for hydrogen peroxide. J. Mol. Catal. A: Chem. 2013, 378, 30.
(31) Zhang, D.; Xie, Q.; Chen, A.; Wang, M.; Li, S.; Zhang, X.; Han, G.; Ying, A.; Gong, J.; Tong, Z. Fabrication and catalytic properties of novel urchin-like Co3O4. Solid State Ionics 2010, 181, 1462.
(32) Varkey, A. J.; Fort, A. F. A chemical method for preparation of cobalt oxide thin films. Sol. Energy Mater. Sol. Cells 1993, 31, 277.
(33) Ding, Y.-S.; Xu, L.-P.; Chen, C.-H.; Shen, X.-F.; Suib, S. L. Syntheses of nanostructures of cobalt hydrotalcite like compounds and Co3O4 via a microwave-assisted reflux method. J. Phys. Chem. C 2008, 112, 8177.
(34) Burriel, M.; Garcia, G.; Santiso, J.; Hansson, A. N.; Linderoth, S.; Figueras, A. Co3O4 protective coatings prepared by pulsed injection metal organic chemical vapour deposition. Thin Solid Films 2005, 473, 98.
(35) Zhan, H. J.; Xia, Q. H.; Lu, X. H.; Zhang, Q.; Yuan, H. X.; Su, K. X.; Ma, X. T. Selective epoxidation of styrene with air catalysed by CoOx and CoOx/SiO2 with reductant. Catal. Commun. 2007, 8, 1472.
(36) Rios, E.; Gautier, J.-L.; Poillerat, G.; Chartier, P. Mixed valency spinel oxides of transition metals and electrocatalysis: case of the MnxCo3-xO4 system. Electrochimi. Acta 1998, 44, 1491.
(37) Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132.
(38) Loh, K. P.; Bao, Q.; Eda, G.; Ghhowalla, M. Graphene oxide as a chemically tunable platform for optical applications. Nat. Chem. 2012, 2, 1015.
(39) Bonaccorso, F.; Lombardo, A.; Hasan, T.; Sun, Z.; Colombo, L.; Ferrari, A. C. Production and processing of graphene and 2d crystals. Mater. Today 2012, 15, 564.
(40) Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183.
(41) Wang, Z.; Xiao, Y.; Cui, X.; Cheng, P.; Wang, B.; Gao, Y.; Li, X.; Yang, T.; Zhang, T.; Lu, G. Humidity-sensing properties of urchinlike CuO nanostructures modified by reduced graphene oxide. ACS Appl. Mater. Interfaces 2014, 6, 3888.
(42) Yan, L.; Chang, Y. N.; Yin, W.; Liu, X.; Xiao, D.; Xing, G.; Zhao, L.; Gu, Z.; Zhao, Y. Biocompatible and flexible graphene oxide/upconversion nanoparticle hybrid film for optical pH sensing. Phys. Chem. Chem. Phys. 2014, 16, 1576.
(43) Lu, X.; Yu, M.; Huang, H.; Ruoff, R. S. Tailoring graphite with goal of archieving single sheets. Nanotechnology 1999, 10, 269.
(44) Li, X.; Magnuson, C. W.; Venugopal, A.; Tromp, R. M.; Hannon, J. B.; Vogel, E. M.; Colombo, L.; Ruoff, R. S. Large-area graphene single crystals grown by low-pressure chemical vapor deposition of methane on copper. J. Am. Chem. Soc. 2011, 133, 2816.
(45) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706.
(46) Hasan, T.; Torrisi, F.; Sun, Z.; Popa, D.; Nicolosi, V.; Privitera, G.; Bonaccorso, F.; Ferrari, A. C. Solution-phase exfoliation of graphite for ultrafast photonics. Phys. Status Solidi B 2010, 247, 2953.
(47) Torrsi, F.; Hasan, T.; Wu, W.; Sun, Z.; Lombardo, A.; Kulmala, T. S.; Hsieh, G.-W.; Jung, S.; Bonaccorso, F.; Paul, P. J.; Chu, D.; Ferrari, A. C. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992.
(48) Srivastava, K. P.; Ghosh, S. Eliminating defects from graphene monolayers during chemical exfoliation. Appl. Phys. Lett. 2013, 102, 043102.
(49) Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 1339.
(50) Dikin, D. A.; Stankovich, S.; Zimney, E. J.; Piner, R. D.; Dommett, G. H.; Evmenenko, G.; Nguyen, S. T.; Ruoff, R. S. Preparation and characterization of graphene oxide paper. Nature 2007, 448, 457.
(51) Feng, H.; Cheng, R.; Zhao, X.; Duan, X.; Li, J. A low-temperature method to produce highly reduced graphene oxide. Nat. Commun. 2013, 4, 1539.
(52) Koch, K. R.; Krause, P. F. Oxidation by Mn2O7: An impressive demonstration of the powerful oxidizing property of dimanganeseheptoxide. J. Chem. Ed. 1982, 59, 973.
(53) Dreyer, D. R.; Park, S.; Bielawski, C. W.; Ruoff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228.
(54) Eda, G.; Mattevi, C.; Yamaguchi, H.; Kim, H.; Chhowalla, M. Insulator to semimetal transition in graphene oxide. J. Phys.Chem. C 2009, 113, 15768.
(55) Fan, Z.-J.; Kai, W.; Yan, J.; Wei, T.; Zhi, L.-J.; Feng, J.; Ren, Y.-M.; Song, L.-P.; Wei, F. Facile Synthesis of graphene nanosheets via Fe reduction of exfoliated graphite oxide. ACS Nano 2011, 5, 191.
(56) Zhang, Z.; Hao, J.; Yang, W.; Lu, B.; Ke, X.; Zhang, B.; Tang, J. Porous Co3O4 nanorods–reduced graphene oxide with intrinsic peroxidase-like activity and catalysis in the degradation of methylene blue. ACS Appl. Mater. Interfaces 2013, 5, 3809.
(57) Su, Y.; Zhu, Y.; Yang, X.; Shen, J.; Lu, J.; Zhang, X.; Chen, J.; Li, C. A highly efficient catalyst toward oxygen reduction reaction in neutral media for microbial fuel cells. Ind. Eng. Chem. Res. 2013, 52, 6076.
(58) Li, D.; Shi, D.; Chen, Z.; Liu, H.; Jia, D.; Guo, Z. Enhanced rate performance of cobalt oxide/nitrogen doped graphene composite for lithium ion batteries. RSC Adv. 2013, 3, 5003.
(59) Liang, Y.; Li, Y.; Wang, H.; Zhou, J.; Regier, T.; Dai, H. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780.
(60) Lan, W. J.; Kuo, C. C.; Chen, C. H. Hierarchical nanostructures with unique Y-shaped interconnection networks in manganese substituted cobalt oxides: the enhancement effect on electrochemical sensing performance. Chem. Commun. 2013, 49, 3025.
(61) Kuo, C. C.; Lan, W. J.; Chen, C. H. Redox preparation of mixed-valence cobalt manganese oxide nanostructured materials: highly efficient noble metal-free electrocatalysts for sensing hydrogen peroxide. Nanoscale 2014, 6, 334.
(62) Njagi, E. C.; Chen, C.-H.; Genuino, H.; Galindo, H.; Huang, H.; Suib, S. L. Total oxidation of CO at ambient temperature using copper manganese oxide catalysts prepared by a redox method. Appl. Catal., B 2010, 99, 103.
(63) Tian, Z.-Y.; Tchoua Ngamou, P. H.; Vannier, V.; Kohse-Höinghaus, K.; Bahlawane, N. Catalytic oxidation of VOCs over mixed Co–Mn oxides. Appl. Catal., B 2012, 117-118, 125.
(64) Lv, X.-J.; Fu, W.-F.; Chang, H.-X.; Zhang, H.; Cheng, J.-S.; Zhang, G.-J.; Song, Y.; Hu, C.-Y.; Li, J.-H. Hydrogen evolution from water using semiconductor nanoparticle/graphene composite photocatalysts without noble metals. J. Mater. Chem. 2012, 22, 1539.
(65) Akhavan, O. Graphene Nanomesh by ZnO nanorod photocatalysts. ACS Nano 2011, 4, 4174.
(66) Kayan, A.; Tarcan, E.; Kadiroglu, U.; Esmer, K. Electrical and dielectrical properties of the MnO2 doped with As2O3 and SnO. Mater. Lett. 2004, 58, 2170.
(67) Atkins, P; Paula, J. Physical Chemistry; Oxiford University Press: Oxiford, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code