Responsive image
博碩士論文 etd-0712114-233942 詳細資訊
Title page for etd-0712114-233942
論文名稱
Title
模擬球柵陣列封裝錫球在熱機械力學行為下之疲勞壽命分析
Thermo-mechanical Finite Element Model in BGA Solder Joints Fatigue Life Analysis
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
150
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-30
繳交日期
Date of Submission
2014-08-27
關鍵字
Keywords
疲勞壽命、變異數分析、球柵陣列封裝、累積應變能密度、實驗設計法
Fatigue Life, Design of Experiment, ANOVA, Accumulative Strain Energy Density, BGA Package
統計
Statistics
本論文已被瀏覽 5746 次,被下載 1156
The thesis/dissertation has been browsed 5746 times, has been downloaded 1156 times.
中文摘要
隨著微電子封裝技術日新月異,電子產品為了發展更高的效能且更小、更輕和成本控制等考量,電子封裝之散熱管理成為很重要的課題。在使用電子產品時,由於電力消耗及環境因素,將伴隨著溫度變化,加上微電子封裝體內部材料產生熱膨脹係數不匹配之情形,導致熱應力發生在連接晶片與印刷電路板的錫球上。本研究以ANSYS有限元素軟體模擬球柵陣列 (Ball Grid Array, BGA) 封裝體於溫度循環負載作用下之黏塑性 (Viscoplastic) 行為,並分析錫球接點上之累積應變能密度。接著,將有限元素模型模擬的分析結果,透過實驗設計方法 (Design of Experiment, DoE) 討論錫球之材料參數與結構尺寸的控制因子設計,並利用ANOVA (Analysis of Variance) 變異數分析來討論各個控制因子間的交互影響,最後求得迴歸模型 (Regression Model) 以找出最佳化控制因子。
本研究主要目的在於提供封裝體內部的錫球可靠度改良之實驗設計方法,藉此快速地預測錫球之累積應變能密度及疲勞壽命,並透過錫球材料參數及結構尺寸的最佳化組合,來降低錫球之塑性應變及提高錫球疲勞壽命,對於封裝結構的設計與開發極有助益。
Abstract
As the microelectronic package develops technologies for fabrication smaller, faster and economical, thermal management play an important role. Temperature variation caused by either environmental changes or power consumption, and the coefficient of thermal expansion (CTE) mismatch between different packages material lead to stress and strain in package assemblies especially in solder joint. This research builds up the viscoplastic finite element model to analyze thermal-mechanical behavior of solder joint under temperature cycling loading. The finite element software ANASYS is used to calculate the accumulative strain energy density of solder joint. Furthermore, a design of experiment (DoE) with factorial analysis is used to investigate the reliability impact of the design parameters, including solder material properties and geometry. Finally, we use the analysis of variance (ANOVA) to obtain the regression model and to find out optimization factors.
The purpose of this research is to provide a quickly experimental design assessment to improve reliability of the solder joint. The assessment model can be used to predict the accumulative strain energy density and fatigue life of the solder joint in terms of cycles to failure. The smaller plastic strain can be achieved through a better combination of material properties and geometry parameters, which is helpful of packaging design before to manufacturing.
目次 Table of Contents
目錄
論文審定書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 v
圖目錄 viii
表目錄 x
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 研究動機與目的 6
1.4 研究方法 8
1.5 章節提要 8
第二章 文獻回顧 10
2.1 前言 10
2.2 理論分析模型 12
2.3 有限元素分析法 18
2.4 疲勞壽命預測 22
2.4.1 遲滯迴線 (Hysteresis Loop) 24
2.4.2 低週期疲勞 (Low-cycle Fatigue) 25
2.4.3 循環應力應變曲線 (Cyclic Stress-strain Curve) 26
2.4.4 疲勞壽命預測模型 29
2.5 實驗設計方法 37
第三章 有限元素分析與參數設計 42
3.1 問題陳述 42
3.2 研究方法 43
3.3 分析模型之建立 44
3.3.1 相同尺寸晶片堆疊封裝體 45
3.3.2 BGA封裝體 45
3.4 黏塑性分析與彈性-塑性-潛變分析 47
3.4.1 黏塑性分析 48
3.4.2 彈性-塑性-潛變分析 52
3.4.3 溫度負載之設定 53
3.4.4 模擬結果之計算 55
3.5 分析流程與因子規劃 56
3.5.1 控制因子選定 56
3.5.2 實驗設計分析 58
3.5.3 變異數分析 59
第四章 有限元素模擬之結果與討論 60
4.1 相同尺寸晶片堆疊封裝體 60
4.1.1 有限元素模型介紹與設定 60
4.1.2 模擬結果 65
4.2 BGA封裝體 69
4.2.1 有限元素模型介紹與設定 69
4.2.2 BGA模型有限元素分析結果與驗證 74
4.3 彈性-塑性-潛變分析與黏塑性分析結果 80
4.4 總結 87
第五章 實驗設計之結果與討論 88
5.1 初步因子篩選 88
5.2 三水準全因子實驗 89
5.3 變異數分析 90
5.3.1 異常值 (離群值) 之檢查 91
5.3.2 迴歸模式常態性檢查 93
5.3.3 殘差之獨立性檢查 94
5.3.4 殘差之恆常性檢查 96
5.3.5 錫球應變能變異數分析結果 97
5.4 最佳化參數分析 106
5.5 總結 107
第六章 結論與未來展望 108
6.1 結論 108
6.2 貢獻 109
6.3 未來研究方向 110
參考文獻 111
附錄 119
參考文獻 References
[1] He, L., Elassaad, S., Shi, Y., Hu, Y., & Yao, W. (2011). System-in-Package: Electrical and Layout Perspectives, Foundations and Trends® in Electronic Design Automation, Volume 4, Issue 4, 223-306.
[2] Zahn, B. A. (2002). Finite Element Based Solder Joint Fatigue Life Predictions for a Same Die Size-stacked-chip Scale-ball Grid Array Package. Proceeding of Electronics Manufacturing Technology Symposium, 17-18 July. San Jose, CA, USA.
[3] Timoshenko, S. (1925). Analysis of Bi-Metal Thermostats, Optical Society of America, Volume 11, Issue 3, 233-255.
[4] Suhir, E., Bechou, L., Levrier, B., & Calvez, D. (2013). Predicted Size of the Inelastic Zone in A Ball-grid-array (BGA) Assembly. Proceeding of Aerospace Conference, 2-9 March. Big Sky, MT, USA.
[5] Vandevelde, B., Christiaens, F., Beyne, E., Roggen, J., Peeters, J., Allaert, K., . . . Bergmans, J. (1998). Thermomechanical Models for Leadless Solder Interconnections in Flip Chip Assemblies, Components, Packaging, and Manufacturing Technology, Part A, Volume 21, Issue 1, 177-185.
[6] Suhir, E. (1988). Could Compliant External Leads Reduce the Strength of a Surface-mounted Device?, Proceeding of Electronics Components Conference, 9-11 May. Los Angeles, CA, USA.
[7] Pang, J. H. L., & Chong, D. Y. R. (2001). Flip Chip on Board Solder Joint Reliability Analysis Using 2-D and 3-D FEA Models, Advanced Packaging, Volume 24, Issue 4, 499-506.
[8] Pang, J. H. L., Chong, D. Y. R., & Low, T. H. (2001). Thermal Cycling Analysis of Flip-chip Solder Joint Reliability, Components and Packaging Technologies, Volume 24, Issue 4, 705-712.
[9] Pang, J. H. L., Tze-Ing, T., & Sitaraman, S. K. (1998). Thermo-mechanical Analysis of Solder Joint Fatigue and Creep in a Flip Chip on Board Package Subjected to Temperature Cycling Loading. Proceeding of Electronic Components & Technology Conference, 25-28 May. Seattle, WA, USA.
[10] Pang, J. H. L., Wang, Z. P., & Seetoh, C. W. (2000). CBGA Solder Joint Reliability Evaluation Based on Elastic-Plastic-Creep Analysis, Electronic Packaging, Volume 122, Issue 3, 255-261.
[11] Zhu, W. H., Stoeckl, S., Pape, H., & Gan, S. L. (2003). Comparative Study on Solder Joint Reliability Using Different FE-Models. Proceeding of Electronics Packaging Technology Conference, 10-12 December. Singapore: Pan Pacific Hotel.
[12] Darveaux, R. (2000). Effect of Simulation Methodology on Solder Joint Crack Growth Correlations. Proceeding of 50 th Electronic Components and Technology Conference, 21-24 May. Las Vegas, NV, USA.
[13] Schwerz, R., Meyer, S., Roellig, M., Meier, K., & Wolter, K.-J. (2011). Finite Element Modeling on Thermal Fatigue of BGA Solder Joints with Multiple Voids. Proceeding of International Spring Seminar on Electronics Technology, 11-15 May. Tratanska Lomnica, Slovak Republic.
[14] Lau, J. H., & Lee, S. W. R. (2002). Modeling and Analysis of 96.5Sn-3.5Ag Lead-free Solder Joints of Wafer Level Chip Scale Package on Buildup Microvia Printed Circuit Board, Electronics Packaging Manufacturing, Volume 25, Issue 1, 51-58.
[15] Yeo, A., Lee, C., & Pang, J. H. L. (2006). Flip Chip Solder Joint Reliability Analysis Using Viscoplastic and Elastic-plastic-creep Constitutive Models, Components and Packaging Technologies, Volume 29, Issue 2, 355-363.
[16] Wang, G. Z., Becker, K., Wilde, J., & Cheng, Z. N. (1998). Applying Anand Model to Represent the Viscoplastic Deformation Behavior of Solder Alloys, Electronic Packaging, Volume 123, Issue 3, 247-253.
[17] Bor Zen, H., & Bunell, L. G. (1995). Nonlinear Finite Element Simulation of Thermoviscoplastic Deformation of C4 Solder Joints in High Density Packaging under Thermal Cycling, Components, Packaging, and Manufacturing Technology, Part A, Volume 18, Issue 3, 585-591.
[18] Michaelides, S., & Sitaraman, S. K. (1998). Effect of Material and Geometry Parameters on the Thermo-mechanical Reliability of Flip-chip Assemblies. Proceeding of Thermal and Thermomechanical Phenomena in Electronic Systems Conference, 27-30 May. Seattle, WA, USA.
[19] Zhengfang, Q., Minfu, L., & Sheng, L. (1999). Fatigue Life Prediction of Flip-chips in Terms of Nonlinear Behavior of Solder and Underfill. Proceeding of Electronic Components and Technology Conference, 1-4 June. San Diego, CA, USA.
[20] Ong, E. T., Tay, A. A. O., & Wu, J. H. (2000). Effect of Delamination on the Thermal Fatigue of Solder Joints in Flip Chips. Proceeding of Thermal and Thermomechanical Phenomena in Electronic Systems Conference, 23-26 May. Las Vegas, NV, USA.
[21] Groothuis, S. K., Jiang, T., & Yong, D. (2003). Flip-chip-in-a-package Solder Joint Reliability Simulation. Proceeding of University/Government/Industry Microelectronics Symposium, 30 June-2 July. Boise, Idaho, USA: Boise State University
[22] Xuejun, F., Min, P., & Bhatti, P. K. (2006). Effect of Finite Element Modeling Techniques on Solder Joint Fatigue Life Prediction of Flip-chip BGA Packages. Proceeding of Electronic Components and Technology Conference, 30 May-2 June. San Diego, CA, USA: Sheraton San Diego Hotel & Marina.
[23] Tunga, K., & Sitaraman, S. K. (2010). Predictive Model Development for Life Prediction of PBGA Packages With SnAgCu Solder Joints, Components and Packaging Technologies, Volume 33, Issue 1, 84-97.
[24] Lee, W. W., Nguyen, L. T., & Selvaduray, G. S. (2000). Solder Joint Fatigue Models: Review and Applicability to Chip Scale Packages, Microelectronics Reliability, Volume 40, 231-244.
[25] Li, H. (2003). FEM Analysis with DSC Modeling for Materials in Chip-substrate Systems. Doctoral dissertation, University of Arizona. Retrieved from http://hdl.handle.net/10150/280363
[26] Engelmaier, W. (1996). BGA and CGA Solder Attachments: Results of Low-acceleration Reliability Test and Analysis, Soldering & Surface Mount Technology, Volume 8, Issue 3, 22-31.
[27] Engelmaier, W. (1983). Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling, Components, Hybrids, and Manufacturing Technology, Volume 6, Issue 3, 232-237.
[28] Yeo, C. K., Mhaisalkar, S., & Pang, H. L. J. (1996). Solder Joint Reliability Study of 256 Pin, 0.4 mm Pitch, PQFP. Proceeding of Electronic Components and Technology Conference, 28-31 May. Orlando, FL, USA.
[29] Yeo, A., Lee, C., & Pang, J. H. L. (2004). Flip Chip Solder Joint Fatigue Analysis Using 2D and 3D FE Models. Proceeding of Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems Conference, 10-12 May. Brussels, Belgium: Novotel Tour Noire.
[30] Knecht, S., & Fox, L. (1990). Constitutive Relation and Creep-fatigue Life Model for Eutectic Tin-lead Solder, Components, Hybrids, and Manufacturing Technology, Volume 13, Issue 2, 424-433.
[31] Vandevelde, B., Zhang, K., Vandepitte, D., Baelmans, M., Caers, J., & Beyne, E. (2003). Parameterized Modeling of Thermomechanical Reliability for CSP Assemblies, Electronic Packaging, Volume 125, Issue 4, 498-505.
[32] Darveaux, R. (2002). Effect of Simulation Methodology on Solder Joint Crack Growth Correlation and Fatigue Life Prediction, Electronic Packaging, Volume 124, Issue 3, 147-154.
[33] Qiang, Y., Shiratori, M., & Ohshima, Y. (1998). A Study of the Effects of BGA Solder Geometry on Fatigue Life and Reliability Assessment. Proceeding of Thermal and Thermomechanical Phenomena in Electronic Systems Conference, 27-30 May. Seattle, WA, USA.
[34] Mercado, L., Sarihan, V., Guo, Y., & Mawer, A. (1999). Impact of Solder Pad Size on Solder Joint Reliability in Flip Chip PBGA Packages. Proceeding of Electronic Components and Technology Conference, 1-4 June. San Diego, CA, USA.
[35] Mao, C.-Y., & Chen, R.-S. (2008). Packaging Parameter Analysis and Optimization Design on Solder Joint Reliability for Twin Die Stacked Packages by Variance in Strain Energy Density (SED) of Each Solder Joint, Microelectronics Reliability, Volume 48, Issue 1, 119-131.
[36] Mertol, A. (1995). Application of the Taguchi method on the robust design of molded 225 plastic ball grid array packages, Components, Packaging, and Manufacturing Technology, Part B: Advanced Packaging, Volume 18, Issue 4, 734-743.
[37] Mertol, A. (2000). Application of the Taguchi Method to Chip Scale Packaging (CSP) Design, Advanced Packaging, Volume 23, Issue 2, 266-276.
[38] van Driel, W. D., Zhang, G. Q., Janssen, J. H. J., & Ernst, L. J. (2003). Response Surface Modeling for Nonlinear Packaging Stresses, Electronic Packaging, Volume 125, Issue 4, 490-497.
[39] van Driel, W. D., Hochstenbach, H. P., & Zhang, G. Q. (2006). Design for Reliability of Wafer Level Packages. Proceeding of Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, 24-26 April. Como, Italy.
[40] Lee, C.-C., Chang, S.-M., & Chiang, K.-N. (2007). Sensitivity Design of DL-WLCSP Using DOE with Factorial Analysis Technology, Advanced Packaging, Volume 30, Issue 1, 44-55.
[41] Lee, C.-C., Lee, C.-C., Ku, H.-T., Chang, S.-M., & Chiang, K.-N. (2006). Solder Joints Layout Design and Rreliability Enhancements of Wafer Level Packaging Using Response Surface Methodology, Microelectronics Reliability, Volume 47, Issue 2–3, 196-204.
[42] Hossain, M. M., Lulu, M., Reh, S., Jagarkal, S. G., & Agonafer, D. (2007). Design Optimization and Reliability of PWB Level Electronic Package, Electronic Packaging, Volume 129, Issue 1, 9-18.
[43] Zhai, C. J., Sidharth, & Blish, R., II. (2003). Board Level Solder Reliability Vs. Ramp Rate and Dwell Time during Temperature Cycling. Proceeding of Reliability Physics Symposium, 30 March-4 April. Dallas, Texas, USA.
[44] Jamal, M. N. Z. Z. A. Z., & Quadir, G. A. (2011). Temperature Cycling Analysis for Ball Grid Array Package Using Finite Element Analysis, Microelectronics International, Volume 28, Issue 1, 17-28.
[45] Anand, L. (1985). Constitutive Equations for Hot-working of Metals, Plasticity, Volume 1, Issue 3, 213-231.
[46] Brown, S. B., Kim, K. H., & Anand, L. (1989). An Internal Variable Constitutive Model for Hot Working of Metals, Plasticity, Volume 5, Issue 2, 95-130.
[47] Shi, X. Q., Zhou, W., Pang, H. L. J., & Wang, Z. P. (1999). Effect of Temperature and Strain Rate on Mechanical Properties of 63Sn/37Pb Solder Alloy, Electronic Packaging, Volume 121, Issue 3, 179-185.
[48] Shi, X. Q., Yang, Q. J., Wang, Z. P., Pang, H. L. J., & Zhou, W. (2000). Reliability Assessment of PBGA Solder Joints Using the New Creep Constitutive Relationship and Modified Energy-based Life Prediction Model. Proceeding of Electronics Packaging Technology Conference, 5-7 December. Singapore.
[49] Geisler, K. J. L., & Holahan, M. M. (2010). Thermomechanical Modeling and Evaluation of the Impacts of BGA Warpage on Low-cycle Solder Fatigue. Proceeding of Electronic Components and Technology Conference, 1-4 June. Las Vegas, NV, USA.
[50] Chow, S. G., Lin, Y., Ouyang, E., & Ahn, B. (2012). A Finite Element Analysis of Board Level Temperature Cycling Reliability of Embedded Wafer Level BGA (eWLB) Package. Proceeding of Electronic Components and Technology Conference, 29 May-01 June. San Diego, CA, USA.
[51] Chang, J., Wang, L., Dirk, J., & Xie, X. (2006). Finite Element Modeling Predicts the Effects of Voids on Thermal Shock Reliability and Thermal Resistance of Power Device, Welding, 63-70.
[52] Williams, C., Tan, K. E., & Pang, J. H. L. (2010). Thermal Cycling Fatigue Analysis of SAC387 Solder Joints. Proceeding of Thermal and Thermomechanical Phenomena in Electronic Systems Conference, 2-5 June. Las Vegas, NV, USA.
[53] Lall, P., Islam, M. N., Singh, N., Suhling, J. C., & Darveaux, R. (2004). Model for BGA and CSP Reliability in Automotive Underhood Applications, Components and Packaging Technologies, Volume 27, 585-593.
[54] JEDEC JESD22-A104D. (2009). Temperature Cycling. Available from JEDEC at http://www.jedec.org
[55] Erinc, M., Schreurs, P. J. G., Zhang, G. Q., & Geers, M. G. D. (2004). Characterization and Fatigue Damage Simulation in SAC Solder Joints, Microelectronics Reliability, Volume 44, Issue 9-11, 1287-1292.
[56] Chandran, B., Goyal, D., & Thomas, J. (2000). Effect of Ppackage Design and Layout on BGA Solder Joint Reliability of an Organic C4 Package. Proceeding of Electronic Components and Technology Conference, 21-24 May. Las Vegas, NV, USA.
[57] Tee, T. Y., Ng, H. S., & Zhong, Z. (2006). Board Level Solder Joint Reliability Analysis of Stacked Die Mixed Flip-chip and Wirebond BGA, Microelectronics Reliability, Volume 46, Issue 12, 2131-2138.
[58] Ma, Y. Y., Luan, J. E., Goh, K. Y., Whiddon, J. W., Che, F. X., Hu, G. J., & Baraton, X. (2008). Finite Element Analysis of Thermal Cycling Reliability of an Extra Large Thermally Enhanced Flip Chip BGA Package with Rotated Die. Proceeding of Electronics Packaging Technology Conference, 9-12 December. Singapore: Grand Copthorne Waterfront Hotel.
[59] Ming-Che, H., Lee, C.-C., Li Chiun, H., Wang, V., & Perng, H. (2011). Parametric Study for Warpage and Stress Reduction of Variable Bump Types in fcFBGA. Proceeding of International Microsystems, Packaging, Assembly and Circuits Technology Conference, 19-21 October. Taipei, Taiwan: NTUH International Convention Center.
[60] Gonzalez, M., Bulcke, M. V., Vandevelde, B., Beyne, E., Lee, Y., Harkness, B., & Meynen, H. (2004). Finite Element Analysis of an Improved Wafer Level Package Using Silicone under Bump (SUB) Layers. Proceeding of Thermal and Mechanical Simulation and Experiments in Microelectronics and Microsystems Conference, 10-12 May. Brussels, Belgium: Novotel Tour Noire.
[61] Sawada, Y., Harada, K., & Fujioka, H. (2003). Study of Package Warp Behavior for High-performance Flip-chip BGA, Microelectronics Reliability, Volume 43, Issue 3, 465-471.
[62] Tee, T. Y., Ng, H. S., Yap, D., & Zhong, Z. (2003). Comprehensive Board-level Solder Joint Reliability Modeling and Testing of QFN and PowerQFN Packages, Microelectronics Reliability, Volume 43, Issue 8, 1329-1338.
[63] Cheng, H.-C., Chiang, K.-N., Chen, C.-K., & Lin, J.-C. (2001). A Study of Factors Affecting Solder Joint Fatigue Life of Thermally Enhanced Ball Grid Array Assemblies, Chinese Institued of Engineers, Volume 24, Issue 4, 439-451.
[64] Dauksher, W., & Lau, J. (2009). A Finite-Element-Based Solder-Joint Fatigue-Life Prediction Methodology for Sn–Ag–Cu Ball-Grid-Array Packages, IEEE Transactions on Device and Materials Reliability, Volume 9, Issue 2, 231-236.
[65] Gu, Y., & Nakamura, T. (2004). Interfacial Delamination and Fatigue Life Estimation of 3D Solder Bumps in Flip-chip Packages, Microelectronics Reliability, Volume 44, Issue 3, 471-483.
[66] Fa-Xing, C., Pang, J. H. L., & Xu, L. H. (2006). IMC Consideration in FEA Simulation for Pb-free Solder Joint Reliability. Proceeding of Thermal and Thermomechanical Phenomena in Electronics Systems Conference, 30 May-2 June. San Diego, CA, USA.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code