Responsive image
博碩士論文 etd-0712115-083756 詳細資訊
Title page for etd-0712115-083756
論文名稱
Title
利用雙絕緣層改善奈米結構PN接面紫外光感測器之研究
Improving Ultraviolet Detection Performance of Nanostructured P-N Junction with Double Insulating Layers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-17
繳交日期
Date of Submission
2015-08-17
關鍵字
Keywords
氧化鋅水熱法、P-N異質接面、高介電常數絕緣層、紫外光感測器、奈米結構
P-N heterojunction, nanostructure, ultraviolet detection, high-κ insulating layer, ZnO hydrothermal method
統計
Statistics
本論文已被瀏覽 5837 次,被下載 33
The thesis/dissertation has been browsed 5837 times, has been downloaded 33 times.
中文摘要
本論文探討在奈米結構P-N異質接面兩端加上絕緣層的新型元件應用於紫外光感測器之研製。利用射頻濺鍍系統在矽基板上依序沉積氧化銅(CuO)與氧化鋅(ZnO)薄膜形成P-N異質接面。氧化鋅薄膜作為種子層,在其上方以水熱法成長氧化鋅奈米柱來改善元件對紫外光的感測能力。二氧化鉿(HfO2)薄膜則是沉積在P-N接面的兩側當作絕緣層來增進元件的表現。再以熱蒸鍍法沉積金屬鋁(Al)在二氧化鉿薄膜兩端形成電極,完成Al/HfO2/CuO/ZnO/HfO2/Al元件結構。氧化鋅奈米柱結構與水熱反應時間及反應物莫爾濃度等參數息息相關,透過SEM觀察薄膜與奈米結構的形貌並分析其對元件表現之影響。
實驗結果顯示,調配莫耳濃度0.1M及水熱成長5小時的氧化鋅奈米柱結構所製作而成的元件,經過退火步驟後對紫外光源照射的綜合表現為最佳。靈敏度、上升時間與回復時間分別為158.7%、3秒與4秒。由於奈米柱結構可以幫助紫外光被氧化鋅再次吸收,增加被元件吸收的機會。退火更改善了氧化鋅材料中的缺陷。雙絕緣層能夠抑制元件暗電流,使得靈敏度大幅上升。對於紫外光感測器應用於紫外線指數偵測與航太工業相當具有發展性。
Abstract
In this thesis, the nanostructed P-N heterojunction with double insulating layers applied to ultraviolet (UV) detecting applications has been well studied. ZnO and CuO films were deposited on silicon substrate sequentially to form the heterojunction by using the RF sputtering system. ZnO film is also a seed layer for growing the nanorod structure by hydrothermal method. ZnO nanorods can improve the device performance to UV. HfO2 thin films were deposited on both sides of P-N heterojunction as insulating layers to enhance the sensitivity. Aluminum electrodes were deposited on the insulating layers to form the Al/HfO2/CuO/ZnO/HfO2/Al device structure. The morphology of the ZnO nanorods is related to the hydrothermal reaction time and the reagent concentrations. All these surface structures are observed by scanning electron microscope (SEM) to analyze the effects on device performance.
The results show that the device under 0.1M hydrothermal solution for growing 5 hours has the best sensitivity to UV radiation after an annealing process. The sensitivity, rise time and recovery time are 158.7%, 3 s and 4 s, respectively. Nanorod structure can help UV has more chances be absorbed by the ZnO. Annealing process reduces the defects in the material. Double insulating layers restrain the dark current and enhance the sensitivity. The research has a great potential for applying into ultraviolet index (UVI) detection and aerospace industry.
目次 Table of Contents
論文審訂書 i
誌謝 ii
摘要 iii
ABSTRACT iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 序論 1
1-1 前言 1
1-2 紫外光感測器 2
1-3 元件結構所選用的材料介紹 2
1-4 論文架構 4
第二章 理論基礎 5
2-1 電漿 5
2-1-1 電漿的產生與碰撞 5
2-2 濺鍍原理 6
2-2-1 濺鍍的薄膜沉積現象 6
2-3 氧化鋅水熱法成長原理 7
2-4 蒸鍍原理 8
2-5 半導體照光產生載子與復合現象 9
2-6 氧化鋅照光產生載子與復合原理 10
2-7 元件結構原理 10
2-8 退火原理 12
2-9 薄膜與奈米結構形貌分析儀器 12
第三章 實驗步驟 13
3-1 原料選用 13
3-2 高真空射頻濺鍍系統 13
3-3 蒸鍍系統 14
3-4 爐管退火系統 14
3-5 元件製作流程 15
3-5-1 矽基板清洗 15
3-5-2 濺鍍沉積薄膜層 16
3-5-3 水熱法成長氧化鋅奈米柱 16
3-5-4 蒸鍍系統沉積鋁電極 16
3-6 KEITHLEY 2400半導體參數分析儀與照光裝置 17
第四章 結果與討論 18
4-1 不同莫爾濃度比調配水熱法參數成長情況 18
4-2 不同水熱法成長時間與莫爾濃度之的氧化鋅奈米結構 18
4-3 影響紫外光感測器之靈敏度與響應時間因素 19
4-4 不同水熱法莫爾濃度之元件電性量測與紫外光感測器表現 20
 4-5 不同水熱法成長時間之元件電性量測與紫外光感測器表現 21
4-6 綜合討論 23
第五章 未來展望 24
參考文獻 25
參考文獻 References
[1] Z. Alaie, S.Mohammad.Nejad, M.H.Yousefi, “Recent advances in ultraviolet photodetectors,” Materials Science in Semiconductor Processing, Volume29, January 2015, Pages 16 –55
[2] T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu, and X. L. Du, “Visible-blind ultraviolet photodetector based on double heterojunction of n-Zno/insulator-MgO/p-Si,” APPLIED PHYSICS LETTERS 94, 113508 (2009)
[3] Chang-Ju Lee, Young-Jin Kwon, Chul-Ho Won, Jung-Hee Lee, and Sung-Ho Hah, “Dual-wavelength sensitive AlGaN/GaN metal-insulator-semiconductor-insulator-metal ultraviolet sensor with balanced ultraviolet/visible rejection ratios, ”APPLIED PHYSICS LETTERS 103, 111110 (2013)
[4] Chin-Hsiang Chen, Chia-Ming Tsai, Chung-Fu Cheng, Shuo-Fu Yen, Peng-Yin Su, Yu-Hsuan Tsai, and Cheng-Nan Tsai, “GaN-Based Metal–Insulator–Semiconductor Ultraviolet Photodetectors with CsF Current-Suppressing Layer,” Japanese Journal of Applied Physics 51 (2012) 04DG15
[5] Kun You, Hong Jiang, Dabing Li, Xiaojuan Sun, Hang Song, Yiren Chen, Zhiming Li, Guoqing Miao, and Hongbo Liu, “Shift of responsive peak in GaN-based metal-insulator-semiconductor photodetector,” APPLIED PHYSICS LETTERS 100, 121109 (2012)
[6] M.S. Son, S.I. Im, Y.S. Park, C.M. Park, T.W. Kang, K.-H. Yoo, “Ultraviolet photodetector based on single GaN nanorod p–n junctions,” Materials Science and Engineering C 26 (2006) 886 – 888
[7] Kewei Liu, Makoto Sakurai, Meiyong Liao, and Masakazu Aono, “Giant Improvement of the Performance of ZnO Nanowire Photodetectors by Au Nanoparticles,” J. Phys. Chem. C 2010, 114, 19835–19839
[8] Po-Yu Yang, Jyh-Liang Wang, Wei-Chih Tsai, Shui-Jinn Wang, Jia-Chuan Lin, I-Che Lee, Chia-Tsung Chang, Huang-Chung Cheng, “Photoresponse of hydrothermally grown lateral ZnO nanowires,” Thin Solid Films 518 (2010) 7328–7332
[9] K. Wang, J. J. Chen, Z. M. Zeng, J. Tarr, W. L. Zhou, Y. Zhang, Y. F. Yan,
C. S. Jiang,J. Pern, and A. Mascarenhas, “Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays,” APPLIED PHYSICS LETTERS 96, 123105 2010
[10] Hak Dong Cho, Anvar S Zakirov, Shavkat U Yuldashev, Chi Won Ahn, Yung Kee Yeo and Tae Won Kang, “Photovoltaic device on a single ZnO nanowire p–n homojunction,” Nanotechnology 23 (2012) 115401 (6pp)
[11] Q.X. Xia, K.S. Hui, K.N. Hui, D.H. Hwang, Jai Singh, Y.R. Cho, S.K. Lee, W. Zhou, Z.P. Wan, Chi-Nhan Ha Thuc, Y.G. Son, “High quality p-type N-doped AZO nanorod arrays by an ammonia-assisted hydrothermal method,” Materials Letters 78 (2012) 180–183
[12] Y. C. Kong, D. P. Yu, B. Zhang, W. Fang, and S. Q. Feng, “Ultraviolet-emitting ZnO nanowires synthesized by a physical vapor deposition approach,” APPLIED PHYSICS LETTERS VOLUME 78, NUMBER 4
[13]蕭宏,2012,”半導體製程技術導論”,修訂二版,全華圖書股份有限公司
[14]莊達人,1995,”VLSI製造技術”,高立圖書股份有限公司
[15] D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, O. Lupan, G. Chai H. Khallaf, S. Park, A. Schulte, “Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method,” Physical B 403 (2008) 3713– 3717
[16] Sheng Xu, Changshi Lao, Benjamin Weintraub, and Zhong Lin Wang, “Density-controlled growth of aligned ZnO nanowire arrays by seedless chemical approach on smooth surfaces,” J. Mater. Res., Vol. 23, No. 8, Aug 2008
[17] Hui Zhang, Deren Yang, Yujie Ji, Xiangyang Ma, Jin Xu, and Duanlin Que, “Low Temperature Synthesis of Flowerlike ZnO Nanostructures by Cetyltrimethylammonium Bromide-Assisted Hydrothermal Process,” J. Phys. Chem. B, 2004, 108 (13), pp 3955–3958
[18] Shingo Hirano Nobuo Takeuchi, Shu Shimada, Kyosuke Masuya, Katsuhiko Ibe, Hideo Tsunakawa, Makoto Kuwabara, “Room-temperature nanowire ultraviolet lasers: An aqueous pathway for zinc oxide nanowires with low defect density,” Journal of Applied Physics 98, 094305 (2005)
[19] Yong-Jin Kim, Hadiyawarman, Aram Yoon, Miyoung Kim, Gyu-Chul Yi and Chunli Liu, “Hydrothermally grown ZnO nanostructures on few-layer grapheme sheets,” IOP PUBLISHING Nanotechnology 22 (2011) 245603 (8pp)
[20]Min Guo, Peng Diao, Shengmin Cai, “Hydrothermal growth of well-aligned ZnO nanorod arrays: Dependence of morphology and alignment ordering upon preparingconditions,” Journal of Solid State Chemistry 178 (2005) 1864–1873
[21] 劉建廷,〝利用水熱法製備二氧化鈦奈米管與其性質分析〞,國立台北科技大學有機高分子所碩士論文,2007
[22] Ghusoon M. Ali and P. Chakrabarti, “Effect of thermal treatment on the performance of ZnO based metal-insulator-semiconductor ultraviolet photodetectors,”
APPLIED PHYSICS LETTERS 97, 031116 (2010)
[23] http://khvic.nsysu.edu.tw/khvic/JL/57.htm
[24] http://www.m-n-w.com/marionetworks_g_holder/mnw_rog.htm
[25] Aysegul Afal, Sahin Coskun, and Husnu Emrah Unalan, “All solution processed nanowire enhanced ultraviolet photodetectors,” APPLIED PHYSICS LETTERS 102, 043503 (2013)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code