Responsive image
博碩士論文 etd-0712115-094319 詳細資訊
Title page for etd-0712115-094319
論文名稱
Title
應用於高速鐵路雙頻雙極化全向性MIMO天線
Dual-band Dual-Polarization Omnidirectional MIMO Antennas for High-Speed Train Applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-07
繳交日期
Date of Submission
2015-08-12
關鍵字
Keywords
水平極化陣列天線、EBG反射板、極化分集天線、MIMO天線、全向性輻射場型、車載天線、雙極化天線
horizontally polarized antenna array, polarization diversity antennas, omnidirectional radiation pattern, Train antennas, dual-polarized antennas, MIMO antennas, EBG reflector
統計
Statistics
本論文已被瀏覽 5711 次,被下載 365
The thesis/dissertation has been browsed 5711 times, has been downloaded 365 times.
中文摘要
近年來,隨著無線通訊的快速發展,長期演進技術 LTE 可以支援行動終端在高速移動下使用無線網路服務。本論文中,為了在高鐵環境中有穩定、高資料率傳輸,我們提出設計於架設於高鐵車頂上,雙極化、全向性、MIMO、1.7~1.9 GHz 和 2.5~2.7 GHz雙頻車載天線。
首先,提出全向性雙頻鉛直極化單極天線,我們同時設計天線匹配特性和天線固定機制,並探討金屬接地面尺寸與單極天線之場型影響。第二部份,為了達成類似磁偶極天線的水平極化全向性輻射場型,環型天線的電流分佈需為均勻且同相位,但困難設計。透過Alford天線的設計理念,和多模態共振之方法,設計全向性寬頻水平極化天線。具自我支撐饋入架構和雙頻饋入電路等設計,達成雙頻全向性水平極化天線。第三部份,提出長軸91mm短軸51mm高度61mm橢圓柱天線尺寸的全向性雙極化雙頻MIMO車載天線。在天線間距(0.19λ_1.8GHz和0.26λ_2.6GHz)之情況下,天線隔離度皆高於25 dB。天線的實驗和模擬數據將要呈現與討論。最後,我們延伸水平極化天線的應用,包括:相對於金屬反射板,水平極化天線放置於電磁帶隙(electromagnetic band-gap, EBG)反射板之上方,有更佳的反射損耗和輻射場型。可應用於基地台的全向性水平極化天線陣列。
Abstract
n recent years, the development of wireless communication system has grown rapidly. Long Term Evolution (LTE) can support wireless network to fast-moving mobile terminals. In this thesis, for stable and high data rate transmission in the railway wireless communication, vertically/horizontally dual-polarization omnidirectional multiple-input and multiple-output (MIMO) train antennas, which are mounted on the roof of high-speed rail trains, with dual-band 1.7~1.9 GHz and 2.5~2.7 GHz are presented.
First, an omnidirectional dual-band monopole antenna is designed for vertical polarization. In addition to co-designing antenna matching and antenna fixing mechanism, we also study the impact of ground plane on monopole radiation pattern. Secondary, to achieve omnidirectional radiation pattern in horizontal polarization similar to a magnetic dipole antenna, a loop antenna with a uniform and in-phase current distribution is required, but is difficult to design. Derived from Alford antenna design and multi-mode resonance, an omnidirectional broadband horizontally polarized antenna is designed. Furthermore, a dual-band horizontally polarized antenna is achieved by the self-supporting feed architecture and dual-band feed circuit design. Thirdly, we present omnidirectional dual-polarization dual-band MIMO antennas with an elliptical column size of π×91mm×51mm×61mm. The isolation for the proposed antennas is higher than 25dB at a small separation distance between antennas (~0.19λ_1.8GHz and ~0.26λ_2.6GHz, where λ_1.8GHz and λ_2.6GHz are the free space wavelength at 1.8 GHz and 2.6 GHz, respectively). Experimental and simulated results of the proposed antennas are presented and discussed. Finally, some omnidirectional horizontally polarized antenna applications are presented. Compared with the metal reflector, an omnidirectional horizontally polarized antenna on the top of electromagnetic band-gap structure (EBG) reflector has good return loss and radiation patterns. Moreover, an omnidirectional horizontally polarized antenna array is developed for base station applications.
目次 Table of Contents
論文審定書 i
摘要 ii
Abstract iii
目錄 v
圖次 vii
表次 xiii
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 研究方向 4
1.3.1 研究目標 5
第二章 鉛直極化天線設計 6
2.1 單極天線介紹 6
2.2 雙頻鉛直極化天線設計 7
第三章 全向性水平極化天線設計 18
3.1 Alford天線介紹 18
3.2 全向性寬頻水平極化天線設計 20
3.3 全向性雙頻水平極化天線設計 31
3.3.1 全向性水平極化天線饋入機制 35
第四章 全向性雙頻雙極化多重輸出與多重輸入天線 38
4.1 全向性雙頻雙極化多重輸出與多重輸入天線 38
4.2 天線場性量測結果與分析 42
4.2.1 鉛直極化天線場型 42
4.2.2 水平極化天線場型 46
第五章 全向性水平極化天線之延伸應用 51
5.1 全向性水平極化天線之電磁帶隙反射板應用 51
5.1.1電磁帶隙基本理論及單一晶胞設計 51
5.1.2 全向性水平極化天線與電磁帶隙反射板之整合設計 54
5.2 全向性水平極化天線饋入機制改良 57
5.2.1 全向性水平極化天線陣列 58
第六章 結論 61
參考文獻 63
參考文獻 References
[1] ITU-R Report M.2039,'Characteristics of terrestrial IMT-2000 systems for frequency sharing/interference analyses', www.itu.int/itu-r.
[2] 3GPP TS 25.308 v9.2.0 (2010-03); 3rd Generation Partnership Project; Technical Specification Group Radio Access Network; High Speed Downlink Packet Access (HSDPA); Overall description; Stage 2 (Release 9).
[3] 3GPP TS 25.319 v9.3.0 (2010-03): 3rd Generation Partnership Project; Technical Specification Group Radio Access Networks; Enhanced uplink; Overall description; Stage 2 (Release 9).
[4] 3GPP TS 25.306 v9.2.0 (2010-03): 3rd Generation Partnership Project; Technical Specification Group Radio Access Networks; UE Radio Access capabilities (Release 9).
[5] J. Ali ,and C. Jean ,"Performance evaluation of MIMO schemes in 5 MHz bandwidth LTE system," ICWMC 2012:The Eighth International Conference on Wireless and Mobile Communications, pp.334-338.
[6] Sesia, Toufik,and Baker: LTE – The UMTS Long Term Evolution; From Theory to Practice, page 11. Wiley, 2009.
[7] C. F. Huang, Y. W. Tien, and C. L. Tsai, "Design of antennas with spatial diversity for WiMAX terminals on a high-speed train," IEEE-APS Topical Conference on, Antennas. Propag. Wireless Commun. (APWC), pp.239-242, September 2012.
[8] http://www.hubersuhner.com/en/Company/Media/News/917
[9] C. S. Jaime, M. G. Mariano, J. I. Alonso, and F. D. Alfonso, "Long term evolution in high speed railway environments: feasibility and challenges," Bell Labs Technical Journal , vol.18, no.2, pp.237-253, Sept. 2013.
[10] A. Sniady, and J. Soler, "LTE for railways: impact on performance of ETCS railway signaling," IEEE Veh. Technol. Mag., vol.9, no.2, pp.69-77, June 2014
[11] M. A. Jensen ,and J. W. Wallace, "A review of antennas and propagation for MIMO wireless communications," IEEE Trans. Antennas Propag., vol.52, no.11, pp.2810-2824, Nov. 2004.
[12] P.S. Kildal and K. Rosengren, "Correlation and capacity of MIMO systems and mutual coupling, radiation efficiency, and diversity gain of their antennas: simulations and measurements in a reverberation chamber,” IEEE Commun. Mag., vol.42, no.12, pp.104-112, Dec. 2004.
[13] J. Xiong, M. Zhao, H. Li, Z. Ying, and B. Wang, "Collocated electric and magnetic dipoles with extremely low correlation as a reference antenna for polarization diversity MIMO applications," IEEE Antennas Wireless Propag. Lett., vol.11, pp.423-426, 2012.
[14] R. Gabriel and M. Gottl, “Dual-polarized dipole antenna,” U.S. Patent 6,313,809, Nov. 6, 2001.
[15] K. M. Luk and B. Wu, "The magnetoelectric dipole—a wideband antenna for base stations in mobile communications," Proceedings of the IEEE, vol.100, no.7, pp.2297-2307, July 2012.
[16] S. Chen and K. M. Luk, "A dual-mode wideband MIMO cube antenna with magneto-electric dipoles," IEEE Trans. Antennas Propag., vol.62, no.12, pp.5951-5959, Dec. 2014.
[17] J. D. Kraus, and R. J. Marhefka, Antenna: for all applications, 3rd ed. McGraw-Hill, 2002.
[18] Y. Li, Z. Zhang, J. Zheng and Z. Feng, "Compact azimuthal omnidirectional dual-polarized antenna using highly isolated colocated Slots," IEEE Trans. Antennas Propag., vol.60, no.9, pp.4037-4045, Sep. 2012.
[19] Y. Li, Z. Zhang, J. Zheng, Z. Feng and M. F. Iskander, "Design of omnidirectional dual-polarized antenna in slender and low-profile column ," IEEE Trans. Antennas Propag., vol.60, no.9, pp.4037-4045, Sep. 2012.
[20] X. W. Dai, Z. Y. Wang, C. H. Liang, X. Chen, and L. T. Wang, "Multiband and dual-polarized omnidirectional antenna for 2G/3G/LTE application," IEEE Antennas Wireless Propag. Lett., vol.12, pp.1492-1495, 2013.
[21] X. L. Quan, and R.L. Li, "A Broadband Dual-Polarized Omnidirectional Antenna for Base Stations," IEEE Trans. Antennas Propag. , vol. 61, no. 2, pp. 943–947, Feb. 2013.
[22] F. Jolani, Y. Yiqiang, and Z. Chen, "A novel broadband omnidirectional dual polarized MIMO antenna for 4G LTE applications," 2014 IEEE International Wireless Symposium (IWS), pp.24-26 Mar. 2014.
[23] C. Y. Chin ,Y. C. Hsu and J. H. Huang , “全向性水平極化天線,” T.W. Patent M461889U1 , Sep. 11, 2013.
[24] T. Hefele and M. Stolle, “Broadband omnidirectional antenna,” U.S. Patent 2013/0009834, Jan. 10, 2013.
[25] X. L. Quan , R.L. Li ,and D. E. Anagnostou,“Analysis and design of a 45 slant-polarized omnidirectional antenna," IEEE Trans. Antennas Propag., vol. 62, no. 1, pp. 86–93, Jan. 2014.
[26] http://www.kathrein.de/fileadmin/media/druckschriften/99811460.pdf
[27] Y. F.Lin, H. M. Chen and K. L. Wong, "Parametric study of dual-band operation in a microstrip-fed uniplanar monopole antenna," IEE Proc. - Microw. Antennas Propag., vol.150, no.6, pp.411-414, Dec 2003.
[28] K. L. Wong, C. H. Wu, and S. W. Su, “Ultrawide-Band square planar metal-plate monopole antenna with a trident-shaped feeding strip,” IEEE Trans. Antennas Propag., vol. 53, no. 4, pp. 1262–1269, Apr. 2005.
[29] K. L. Wong, and C. H. Wu, “Wide-band omnidirectional square cylindrical metal-plate monopole antenna,” IEEE Trans. Antennas Propag., vol. 53, no. 8, pp. 2758–2761, Aug. 2005.
[30] K. L. Wong, S. W. Su, and C. L. Tang, “Broadband omnidirectional metal-plate monopole antenna,” IEEE Trans. Antennas Propag., vol. 53, no. 1, pp. 581–583, Jan. 2005.
[31] J. D. Kraus,”A Helical antenna ”,PROC. I.R.E., vol. 37, pp. 263-272; Mar. 1949.
[32] M. N. Roy, "Constructing normal-mode helical antennas," IEE-IERE Proceedings -India , vol.7, no.3, pp.119-123, 1969.
[33] C. Caloz and T. Itoh, “Transmission line approach of left-handed (LH) materials and microstrip implementation of an artificial LH transmission line,” IEEE Trans. Antennas Propag., vol. 52, no. 5, pp.1159–1166, May 2004.
[34] A. Lai, C. Caloz, and T. Itoh, “Composite right/left-handed transmission line metamaterials,” IEEE Microw. Mag., vol. 5, no. 3, pp. 34–50, Sep. 2004.
[35] A. L. Borjia, P. S. Hall, and Q. Liu, “Omnidirectional loop antenna with left-handed loading,” IEEE Antennas Wireless Propag. Lett., vol.6, pp. 495–498, 2007.
[36] M. I. Ibrahim, S.I. El-Henawy,and A. M. E. Safwat ,"Dual-band orthogonal-beam multi-standard CRLH loop antenna," 2013 European Microwave Conference (EuMC), pp.1063-1066,Oct. 2013.
[37] B. C. Park and J. H. Lee, “Omnidirectional circularly polarized antenna utilizing zeroth-order resonance of epsilon negative transmissionline,”IEEE Trans. Antennas Propag., vol. 69, no. 7, pp. 2717–2720,Jul. 2011.
[38] B. C. Park and J. H. Lee, "Dual-band omnidirectional circularly polarized antenna using zeroth- and first-order modes," IEEE Antennas Wireless Propag. Lett., vol.11, pp.407-410, 2012.
[39] K. Wei, Z. Zhang, Z. Feng,and M. F. Iskander, "A MNG-TL loop antenna array with horizontally polarized omnidirectional patterns," IEEE Trans. Antennas Propag., vol.60, no.6, pp.2702-2710, June 2012.
[40] K. Wei, Z. Zhang, and Z. Feng, “Design of a wideband horizontally polarized omnidirectional printed loop antenna,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 49–52, 2012.
[41] A. Alford and A. G. Kandoian, “Ultra-high frequency loop antenna,”Trans. AIEE, vol. 59, pp. 843–848, 1940.
[42] H.-R. Chuang, “Omni-directional horizontally polarized Alford loop strip antenna,” U.S. Patent 5,767,809, Jun. 16, 1998.
[43] C. C. Lin, L. C. Kuo, and H. R. Chuang, “A horizontally polarized omnidirectional printed antenna for WLAN applications,” IEEE Trans. Antennas Propag., vol. 54, no. 11, pt. 2, pp. 3551–3556, Nov. 2006.
[44] Y. Zhang, Z. Zhang, Y. Li and Z. Feng, "A dual-loop antenna in a cage structure for horizontally polarized omnidirectional pattern," IEEE Antennas Wireless Propag. Lett., vol.12, pp.1252-1255, 2013
[45] V. Shtrom and W. S. Kish, “System and method for a minimized antenna apparatus with selectable elements,” U.S. Patent 7,362,280, Apr. 22, 2008.
[46] C. H. Ahn, S. W. Oh, and K. Chang, “A dual-frequency omnidirectional antenna for polarization diversity of MIMO and wireless communication applications,” IEEE Antennas Wireless Propag. Lett., vol. 8, pp. 966–970, 2009.
[47] Y. Yu, F. Jolani, and Z. Chen, “A wideband omnidirectional horizontally polarized antenna for 4G LTE applications,” IEEE Antennas Wireless Propag. Lett., vol. 12, pp. 686–689, 2013.
[48] C. Zhu, L. Yao, J. Zhou, "Novel microstrip diplexer based on a dual-band bandpass filter for WLAN system," 2010 Asia-Pacific Microwave Conference Proceedings (APMC), pp.1102-1105, Dec. 2010.
[49] V. Shtrom, W. Kish and B. Barron, “Antennas with polarization diverstiy,” U.S. Patent 7,498,996 B2, Mar. 3, 2009.
[50] V. Shtrom, W. Kish and B. Barron, “Antennas with polarization diverstiy,” U.S. Patent 7,880,683 B2, Feb. 1, 2011.
[51] V. Shtrom, W. Kish and B. Barron, “Dual band dual polarization antenna array,” U.S. Patent 8,860,629 B2, Oct. 14, 2014.
[52] R. G. Vaughan and J. B. Andersen," Antenna diversity in mobile communications,” IEEE Trans. Veh. Technol., pp.149-172 , 1987
[53] S. Blanch, J. Romeu, I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, vol.39, no.9, pp.705-707, May. 2003.
[54] P. Hallbjörner, “The significance of radiation efficiencies when using S-parameters to calculate the received signal correlation from two antennas,” IEEE Antennas Wireless Propag. Lett., vol. 4, no. 1, pp. 97–99, 2005.
[55] N. G. Alexopoulos and D.R. Jackson, “Fundamental superstrate (cover) effects on printed circuit antennas,” IEEE Trans. Antennas Propag., vol. AP-32, no. 8, pp. 807–816, Aug. 1984.
[56] H. F. Chen, M. Y. Lin, and K. H. Lin, "A V-shape edge-groove design for a finite ground plane to reduce pattern ripples of a monopole," IEEE Antennas and Wireless Propagation Letters, vol.7, pp.561-564, 2008.
[57] S. Pu ,and J. Wang, "Research on the receiving and radiating characteristics of antennas on high-speed train using integrative modeling technique,"2009 Asia Pacific Microwave Conference(APMC) , pp.1072-1075, Dec. 2009.
[58] S. Pu, "Research on field-to-circuit signal characteristics of train antennas in railway communication environment using integrative modeling technique," 2013 7th European Conference on Antennas and Propagation (EuCAP), pp.2272-2276, Apr. 2013.
[59] F. Yang, and Y. Rahmat-samii, Electromagnetic band gap structures in antenna engineering, New York: Cambridge University Press, 2008.
[60] E. Özbay, A. Abeyta, G. Tuttle, M. Tringides, R. Biswas, C. T. Chan, C. M. Soukoulis, and K. M. Ho, “Measurement of a three-dimensional photonic band gap in a crystal structure made of dielectric rods”, Phys. Rev. B, Condens. Matter, vol. 50, no. 3, 1945-8, July 1994.
[61] A. S. Barlevy, and Y. Rahmat-Samii, "Characterization of electromagnetic band-gaps composed of multiple periodic tripods with interconnecting vias: concept, analysis, and design," IEEE Trans. Antennas Propag., vol. 49, no. 3, pp.343-353, Mar 2001.
[62] D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Trans. Microwave Theory Tech., vol. 47, no. 11, pp.2059-2074, Nov. 1999.
[63] F. -R. Yang, K. –P. Ma, Y. Qian, and T. Itoh,"A uniplanar compact photonic-bandgap(UC-PBG) structure and its applications for microwave circuit," IEEE Trans. Microwave Theory Tech., vol. 47, no. 8, pp.1509-1514, Aug 1999.
[64] V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, "Novel 2-D photonic bandgap structure for microstrip lines," IEEE Microw. and Guided Wave Lett., vol. 8, no. 2, pp.69-71, Feb 1998.
[65] S. Shahparnia, Ramahi and M. Omar, "Electromagnetic interference (EMI) reduction from printed circuit boards (PCB) using electromagnetic bandgap structures," IEEE Trans. Electromagn. Compat., vol.46, no.4, pp.580–587, Nov. 2004.
[66] M. Coulombe, Koodiani, S. F. and C. Caloz, "Compact elongated mushroom (EM)-EBG structure for enhancement of patch antenna array performances," IEEE Trans. Antennas Propag., vol.58, no.4, pp.1076–1086, Apr. 2010.
[67] L. Leger, T. Monediere and B. Jecko, "Enhancement of gain and radiation bandwidth for a planar 1-D EBG antenna," IEEE Microw. Wireless Compon. Lett., vol.15, no.9, pp.573–575, Sep. 2005.
[68] F. Yang, Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Trans. Antennas Propag., vol.51, no.10, pp.2691-2703, Oct. 2003
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code