Responsive image
博碩士論文 etd-0712115-122836 詳細資訊
Title page for etd-0712115-122836
論文名稱
Title
混合型資源分配策略以增進LTE邊緣用戶下行效能
Improve LTE Downlink Cell-Edge User Performance by Using Hybrid Resource Allocation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-22
繳交日期
Date of Submission
2015-08-12
關鍵字
Keywords
吞吐量、Cell Edge使用者、資源分配演算法、公平性、長期演進通訊技術、服務品質保證(QoS)
Quality of Service (QoS), Resource Scheduling Scheme, Throughput, Fairness, Cell Edge User, LTE
統計
Statistics
本論文已被瀏覽 5695 次,被下載 44
The thesis/dissertation has been browsed 5695 times, has been downloaded 44 times.
中文摘要
4G LTE由於其傳輸速度非常快速,已成為現行無線通訊網路的主流,而基地台所採用的資源分配演算法,更是決定使用者是否能得到資源的關鍵,在LTE系統資源分配演算法中,大部分的演算法都會因為Cell Edge使用者的通道品質較差而不對Cell Edge使用者進行分配,造成Cell Edge公平性問題;再者,由於近年來使用者對於網路影音需求量越來越大,因此,資源分配演算法必須開始著手處理即時串流QoS保證的問題;上述問題在本論文中稱為「系統資源分配平衡問題」,而本論文所提出的QFS (QoS-guaranteed Fairness Scheduling)演算法,處理資源在Cell Edge與Center之間的分配公平性問題,保證Cell Edge使用者可以獲得一定比例的系統資源,也做了即時串流QoS的設定,讓即時串流能夠優先獲得系統資源,確保其延遲時間小於門檻值,另外,QFS演算法加入了封包合適度與充分利用了CQI的特性,可以有效提升系統整體的吞吐量,在公平性方面,QFS演算法則是利用Credit機制來平衡系統整體使用者的吞吐量,以增加其傳輸公平性;模擬結果顯示,QFS演算法在系統整體吞吐量與公平性與其他演算法相比皆有勝出,尤其是在Cell Edge使用者的平均吞吐量約為其他演算法的8~10倍,即時串流的延遲時間與封包遺失率也符合QoS的限制。
Abstract
Long Term Evolution, commonly known as 4G LTE, is a standard to support wireless communication data for mobile devices. In LTE, resource allocation plays an important role in system performance. However, most of existing schemes allocate little or even no resource to cell-edge users because of their low CQI, which will cause unfair transmission. In addition, many multimedia applications have strict Quality of Service (QoS) requirement. Based on the above two motivations, this paper proposes a QoS-guaranteed Fairness Scheduling (QFS) algorithm provide fair data transmission and QoS support. QFS, in particular, dynamically allocates resources to cell-edge users to guarantee their data throughput. Then, QFS give resources to flow by a novel credit mechanism and packet-matching scheme.
Through simulations, we show that QFS improves the data throughput of cell-edge users, reduce packet delay of GBR packets, and provides fair transmission among flows.
目次 Table of Contents
目錄
致謝 ii
中文摘要 iii
Abstract iv
第1章 導論 1
1.1 前言 1
1.2 研究動機及貢獻 3
1.3 論文組織 5
第2章 LTE系統介紹 7
2.1 LTE系統架構 7
2.2 LTE訊框結構 11
2.3 LTE頻譜資源 13
第3章 相關研究 16
第4章 問題定義 21
4.1 無線傳輸模型 21
4.2 LTE下行資源分配之問題 24
第5章 QFS演算法 28
5.1 Credit機制 28
5.2 Cell Edge資源分配 31
5.3 QoS保證之資源分配 33
5.4 設計理念 36
第6章 模擬結果 37
6.1 模擬參數 37
6.2 系統效能模擬分析 38
6.3 資料類型模擬分析 45
6.4 參數效能分析 52
第7章 總結 60
參考文獻 61
參考文獻 References
[1] S.A. AlQahtani, M. Alhassany, “Comparing different LTE scheduling schemes”, IEEE International Wireless Communications and Mobile Computing Conference, pp. 264-269, 2013.
[2] F. Capozzi, G. Piro, L.A. Grieco, G. Boggia, P. Camarda, ” Downlink Packet Scheduling in LTE Cellular Networks: Key Design Issues and a Survey”, IEEE Communications Surveys & Tutorials, vol. 15, no. 2, pp. 678-700, 2012.
[3] Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 2014–2019 White Paper, 2015, http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/white_paper_c11-520862.html
[4] Ericsson Mobility Report, 2015, http://www.ericsson.com/res/docs/2015/ericsson-mobility-report-june-2015.pdf
[5] 3GPP Release 8, http://www.3gpp.org/Release-8
[6] 3GPP TS 36.300: “Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN) Overall Description,” v12.0.0, December, 2013.
[7] 3GPP TS 36.211: “Evolved Universal Terrestrial Radio Access (E-UTRA); Physical Channels and Modulation” V9.1.0 (2010-03)
[8] 3GPP TS 36.104: “Evolved Universal Terrestrial Radio Access (E-UTRA); Base Station (BS) radio transmission and reception” V8.0.0 (2007-12)
[9] B.P.S. Sahoo, D. Puthal, S. Swain, S. Mishra, “A Comparative Analysis of Packet Scheduling Schemes for Multimedia Services in LTE Networks” IEEE International Conference on Computational Intelligence and Networks, pp. 110-115, 2015.
[10] C. Jin-Ghoo, B. Saewoong, “Cell-Throughput Analysis of the Proportional Fair Scheduler in the Single-Cell Environment”, IEEE Transactions on Vehicular Technology, vol. 52, no. 2, pp. 766-778, 2007.
[11] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, P. Whiting, R. Vijayakumar, “Providing quality of service over a shared wireless link”, IEEE Communications Magazine, vol. 39, no. 2, pp. 150-154, 2001.
[12] R. Basukala, H.A. Mohd Ramli, and K. Sandrasegaran, “Performance Analysis of EXP/PF and M-LWDF in Downlink 3GPP LTE System”, IEEE First Asian Himalayas International Conference on Internet, pp. 1-5, 2009.
[13] A. Alfayly, I. Mkwawa, L. Sun and E. Ifeachor, “QoE-based Performance Evaluation of Scheduling Algorithms over LTE”, IEEE Globecom Workshops, pp. 1362-1366, 2012.
[14] S. Fouziya Sulthana and R. Nakkeeran, “Study of Downlink Scheduling Algorithms in LTE Networks”, Academy Publisher Journal of Networks, vol.9, pp. 3381-3391, 2014
[15] W. Chiapin, C. Yi-Pu, K. Chang-Ting, T. Chih-Cheng, W. Hwang-Cheng, K. Fang-Chang, “Hybrid maximum-rate and proportional-fairness resource allocation in the downlink of LTE networks”, IEEE International Conference on Consumer Electronics - Taiwan, pp. 23-24, 2014
[16] A. Al-Amri, S. Al-Zahrani, M. Al-harthi, M. al-qarni, I. Ahmed, “Hybrid frequency-time domain proportional fair resource allocation scheme for LTE downlink”, IEEE International Conference on Networks, pp. 286-290, 2012.
[17] H. Jeng-Ji, L. Wei-Keng, K. Hung-Hsiang, “A resource allocation algorithm for maximizing packet transmissions in downlink LTE cellular systems”, IEEE TENCON, pp. 445-449, 2011.
[18] G. Na, Z. Yiqing, L. Tian, S. Gang, S. Jinglin, “QoS guaranteed resource block allocation algorithm for LTE systems”, IEEE International Conference on Wireless and Mobile Computing, Networking and Communications, pp. 307-312, 2011.
[19] J. Hung-Chin, L. Yun-Jun, “QoS-constrained resource allocation scheduling for LTE network”, IEEE International Symposium on Wireless and Pervasive Computing, pp. 1-6, 2013.
[20] A. Tekovic, R. Nad, “LTE performance at the Cell Edge and ICIC”, IEEE International Symposium on Electronics in Marine,, pp. 255-258, 2013
[21] A.S. Hamza, S.S. Khalifa, H.S. Hamza, K. Elsayed, “A Survey on Inter-Cell Interference Coordination Techniques in OFDMA-Based Cellular Networks”, IEEE Communications Surveys & Tutorials, vol. 15, no. 4, pp. 1642-1670, 2013.
[22] A. Naggary, S. Khamy, “LTE-A edge users improvement using soft fractional frequency reuse and adaptive beamforming technique” IEEE Middle East Conference on Antennas and Propagation, pp. 1-5, 2012.
[23] X. Liang, K. Yamamoto, H. Murata, S. Yoshida, “Adaptive base station cooperation and subchannel reallocation at cell edge in cellular networks with fractional frequency reuse”, IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, pp. 2235-2239, 2009.
[24] M. Rahman, H. Yanikomeroglu, “Dynamic resource allocation for interference management in orthogonal frequency division multiple access cellular communications”, IET Communications, vol. 9, no. 4, pp. 1414-1425, 2010.
[25] G. Piro, L.A. Grieco, G. Boggia, F. Capozzi, and P. Camarda, ” Simulating LTE Cellular Systems: An Open-Source Framework” IEEE Transactions on Vehicular Technology, vol. 60, no. 2, pp. 498-513, 2010.
[26] LTE-Sim, http://telematics.poliba.it/index.php/en/lte-sim
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code