Responsive image
博碩士論文 etd-0712116-091438 詳細資訊
Title page for etd-0712116-091438
論文名稱
Title
利用CLSM/TIRFM量測技術進行DNA分子於微渠道之拉伸實驗研究
An Experimental Study of DNA Molecules Stretching and Deformation in Microchannels via CLSM/TIRFM Optical Measurement Techniques
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
205
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-26
繳交日期
Date of Submission
2016-08-12
關鍵字
Keywords
DNA拉伸、熱電泳、奈米碳管、全內反射螢光顯微鏡、共軛交雷射掃描顯微鏡、微質點影像測速
TIRFM, CLSM, CNT, thermo-electrophoresis, DNA stretching, μPIV
統計
Statistics
本論文已被瀏覽 5739 次,被下載 92
The thesis/dissertation has been browsed 5739 times, has been downloaded 92 times.
中文摘要
為了提升DNA分子於微渠道內之水力拉伸性能,本研究發展出二種新穎的拉伸方式。先利用加熱含有DNA分子之緩衝溶液,流經深度100 μm之漸縮漸擴微渠道(8:1:8)進行拉伸。為將拉伸渠道往奈米尺度發展,將多壁奈米碳管(MWCNT)塗覆於寬度為50 μm/400 μm與高度為10 μm之直管渠道底層,使底層增加表面粗糙度而提升拉伸性能。本研究使用電場驅動,依照流體在微渠道中的流動特性,利用不同區域產生的延展流和剪力流等不同機制拉伸DNA分子,結合高精度的共軛交雷射掃描顯微鏡(CLSM)進行渠道中央區域的延展流動拉伸量測與全內反射螢光顯微鏡(TIRFM)進行近於壁面受剪力流影響之DAN分子形變量測,並利用微質點影像測速儀(μPIV)光學技術量測微渠道之速度場與向量場分佈,結合以上光學可視化量測數據資訊,可針對DNA分子特性進行更伸入的探討。
由前期研究成果得知,加熱含有DNA分子之緩衝溶液,發現DNA分子內部的鍵結力會因溫度提升而逐漸減小,使DNA分子流經渠道縮擴變化之區域更容易改變初始纏繞形態,除了在渠道縮擴處產生延展流拉伸外,於緩衝溶液加熱後,還包含熱泳動、熱擴散等熱效應對DNA分子影響, DNA分子之拉伸性能產生加乘效果,發現熱效應對於DNA分子拉伸形變的效果大於渠道幾何造型變化帶來的影響。在環境溫度為55°C和電場強度為10 kV/m時,結合熱流場之效應,DNA分子最大拉伸率可達到DNA分子總輪廓長度之62 % (約占總數量的30%)。
在渠道奈米化的發展中,著重近於壁面區域的觀測,使用MWCNT塗覆於微渠道底層後,表面粗糙度約75 nm,驅動流體後發現DNA分子流經底部區域,壁面會有較大的速度梯度產生,再加上DNA分子與渠道表面之奈米碳管接觸,進而增加剪力效應對DNA分子拉伸的影響,部分流動的DNA分子能被定點鉗制在塗覆奈米碳管上,使DNA分子直接於定點處進行拉伸,此種設計大幅提升檢測晶片之實用性,當渠道深度縮減達到10 μm時,只需施加較低電場強度(5 kV/m),DNA分子拉伸率即有顯著的效果,與表面未處理的狀態相較, DNA分子最大拉伸長度更能增加近二倍,其最大拉伸率可達到DNA分子總輪廓長度之78 % (約占總數量的5 %)。
藉由本研究水力拉伸實驗所得之經驗,可找尋出更有效且節省時間的DNA分子操控方式,更能以實驗數據分析得到DNA分子精確的相關參數,亦能深入了解DNA分子與生具有的特殊性質。
Abstract
This study developed two novel stretching approaches to enhance the hydrodynamic stretching of DNA molecules in micro-channels. First, DNA stretching was performed flowing heated DNA-containing buffer solution through a 100 μm depth converging-diverging microchannel (8:1:8). To develop stretching channels at a nanoscale, multiwall carbon nanotubes (MWCNT) were coated on the bottom layer in 50/400 µm width and 10 µm depth straight channel to increase surface roughness, which enhances stretching performance. An electrical field driver was used in this study to generate different DNA stretching mechanisms, either elongation flow or shear flow, in different regions according to the flow characteristics of the fluid in the microchannel. The microchannel was integrated with confocal laser scanning microscopy (CLSM) to measure the amount of stretching in the central region of the channel, and with total internal reflection fluorescence microscopy (TIRFM) to measure the deformation of DNA molecules caused by the shear flow near the wall region. Next, micro particle image velocimetry (μPIV) was employed to measure the velocity field and vector field in the channel. Combining the aforementioned optical systems allowed visualization of the measurement data to extensively explore DNA characterization.
A previous study determined that DNA containing buffer solution should be heated to a temperature range of 25°C–55°C. The results revealed that the bonding force between DNA molecules diminished gradually as temperature increased. In addition to stretching in the elongation flow in the converging-diverging region of the channel, thermal effect exerted a greater influence on DNA stretching than did the changes in the geometric shape of a channel. Finally, at an ambient temperature of 55°C and electrical field of 10 kV/m, the maximum stretching ratio reached 62 % for DNA molecules contour length (30% of the total) as both thermal field and flow field influenced DNA stretching.
After MWCNT was used to coat the bottom layer of the microchannel, the surface roughness was approximately 75 nm. A greater velocity gradient was generated near the wall area because electrical field was applied. In addition, the DNA molecules came into contact with the MWCNT, magnifying the shear effects on DNA stretching. The experimental results indicated that when the depth of the channel was reduced to 10 μm, only 5 kV/m of electrical field was required to significantly enhance DNA stretching efficiency. Achieving a maximum stretching ratio reached 78 % for DNA molecules contour length (accounting for approximately 5% of the total). Experimental data analysis was conducted to obtain accurate DNA parameters and afford insights into the special characteristics of DNA molecules.
目次 Table of Contents
CONTENTS
論文審定書…………………………………………………………………i
ACKNOWLEDGMENTS(誌謝)…………………………………………..ii
中文摘要…………………………………………………………………..iii
ABSTRACT...……………………………………………………………...v
CONTENTS…..………………………………………………………......vii
LIST OF TABLES………………………………………………………….x
LIST OF FIGURES……………………………………………………......xi
NOMENCLATURE………...…………………………………………....xvi
CHAPTER 1……………………………………………………………......1
INTRODUCTION………………………………………………………….1
1.1 Background………………………………………………………...1
1.2 Literature survey…………………………………………………...3
1.3 Objective………………………………………………………….22
1.4 Outline of the dissertation…………………………………….…..25
CHAPTER 2………………………………………………………...…….27
EXPERMIEMTAL EQUIPMENT..…..………………………………..….27
2.1 Microscale particle image velocimetry (μPIV) system…….….....27
2.2 Confocal laser scanning microscopy (CLSM) system……..….....29
2.3 Total internal reflection fluorescence microscope (TIRFM) system…………………………...…………….………………...30
2.4 Nanoscale particle image velocimetry (nPIV) system……...…......32
2.5 Electro driven system………………….……………………….…33
2.6 Fabrication equipment...…....…………………….………………34
2.7 Other apparatus ………..……………….……………….…..……34
CHAPTER 3………………………………………………………………50
EXPERIMENTAL METHODS AND PROCEDURES……………..…….50
3.1 Microchannel fabrication…………………………………..……..50
3.2 Sample preparation………………………...……………………..51
3.3 Measurement principles……………………………………..……51
3.4 Theory of electro-osmotic flow and electrophoresis……….…….59
3.5 Compare advantages/ disadvantages of elongation flow and shear flow………………………………………………………….…….63
3.6 One-sided MWCNT walls fabrication process……………………64
3.7 Experimental testing and flow loop………………………………66
CHAPTER 4………………………………………………………………87
THEORY ANALYSIS………………………………………………….…87
4.1 Dimensionless parameter analysis of the flow field……………...87
4.2 The definition of worm-like chain (WLC) ………………….……91
4.3 The definition of freely-jointed chain (FJC) ……………..………92
4.4 Free energy change………………………………………….……94
CHAPTER 5……………………………………………………………....98
DATA REDUCTION AND UNCERTAINTY……………………….……98
CHAPTER 6………………………………………………………..……103
RESULTS AND DISCUSSION…………………………………………103
6.1 DNA molecule stretching in a heated converging-diverging microchannel…………………………………….....…………103
6.2 DNA molecule stretching on one-sided carbon nanotube walls in microchannels…………………...…………….……….………111
CHAPTER 7…………………………………………………………..…137
CONCLUSION AND RECOMMENDATIONS…………………...……137
7.1 Conclusion………………………………...………………….…137
7.2 Recommendations for future work…………………….…..……142
REFERENCES………………………………………………………..…143
APPENDIX...……………………………………………………………177
PUBLICATION LIST……………………………………………………186


LIST OF TABLES
Table 2-1 μPIV system laser specifications…………………………..……36
Table 2-2 80C77 Hisense PIV CCD camera specifications………..………37
Table 2-3 CLSM(Olympus FV300)specifications………………..………38
Table 2-4 Continues wave laser specifications………………...…………..39
Table 2-5 TIRFM laser connector specification (FCP8)………..………….40
Table 3-1 Spectral characteristics of cyanine dimer nucleic acid stains bound to dsDNA…………………………………………………….…68
Table 3-2 Converging-diverging channel parameter and operation conditions……………………………………………………….69
Table 3-3 MWCNT channel parameter and operation conditions…..…….70
Table 5-1 Measurement variables uncertainty……………………………102
Table 6-1 Local velocity map with different heating temperatures...…….119
Table 6-2 Local velocity map with different heating temperatures and electric fields…………………………………………………..120
Table 6-3 DNA molecules average stretching ratio (near wall)……......…121
Table 6-4 Compared with DNA stretching image in different cases….…..122


LIST OF FIGURES
Figure 2-1 μPIV system (a) μPIV laser (Nd-Yag) (b)High speed camera (Dantec 80C77) (c)Microscopy for μPIV(Leica DMILM)(d) Processor……………………………………………………...41
Figure 2-2 CLSM system (a) Ar-ion/He-Ne laser (b) Scanning unit……...42
Figure 2-3 Schematic of Olympus FV300 scanning unit …………………43
Figure 2-4 (a) Inverted system microscope (Olympus IX 71) (b) Mercury lamp (Olympus BX100) ……………………………...………44
Figure 2-5 TIRFM system (a) High speed camera for TIRFM system (b)TIRFM 60× oil lens………………………………...……...45
Figure 2-6 (a) Diode laser 532 nm for TIRFM system (b)TIRFM illuminator……………………………………………...……..46
Figure 2-7 DC Power supply (Stanford Research Systems PS350)…...….47
Figure 2-8 Lithography equipment……………………………………......48
Figure 2-9 Other apparatus………………………….……………...…..…49
Figure 3-1 Microchannel fabrication process………………………...…...71
Figure 3-2 Absorption/Emission wave length of fluorescent dye [193].....72
Figure 3-3 Microscope dichroic mirror units for (a) YOYO-1 (b) JOJO-1 [194] ……………………………………………….………....73
Figure 3-4 Schematics of μPIV and TIRFM measurement region…….…...74
Figure 3-5 Working principle of CLSM………………...…………………75
Figure 3-6 Working principle of TIRFM light path………..………………76
Figure 3-7 Working principle of TIRFM system……………………..……77
Figure 3-8 Schematic of evanescent wave and light source for TIRFM system…………………………… ……………………..….…78
Figure 3-9 Schematic of EOF principle [157] …………………..…....……79
Figure 3-10 Flow profile (a) EOF flow (b) pressure driven….…..……...…80
Figure 3-11 Schematic of MWCNT coating on cover glass……………….81
Figure 3-12 Deposition MWCNT on cover glass (7.5 wt.%) …………..….82
Figure 3-13 Microchannel geometry and observed section…………...…..83
Figure 3-14 MWCNT microchannel geometry and observed section…......84
Figure 3-15 Flow loop of μPIV and CLSM system…..……………………85
Figure 3-16 Flow loop of TIRFM system……………………….……...…86
Figure 4-1 Schematic of free jointed chain model. ..........…...…...……….96
Figure 4-2 Schematic of worm-like chain……………………………...…97
Figure 6-1 DNA molecule velocity at different heating temperatures and electric strength at the channel inlet (a) Spanwise (x = 14.5 mm) and (b) transverse (x = 14.5 mm) ……………….....…………123
Figure 6-2 Velocity gradient at different electric field and at a definite channel inlet x = 14.5 mm (left column) and different channel velocity profile (right column) at y = 0 at different channel position (right column) with different heating temperature and electric strength………...…………………………...…….…124
Figure 6-3 DNA molecule mobility and diffusion coefficient distribution. (a) DNA electrophoresis velocity versus electric field and (b) relationship of diffusion coefficient and buffer solution temperatures [216, 220-222] …………………………...……125
Figure 6-4 Sample images of DNA molecule stretching with various temperatures and electric field strengths at the inlet region (x = 14.6 to 14.9 mm) via CLSM……………...…………..……..126
Figure 6-5 Average stretching length. After deducting the thermal expansion effect and coefficient of DNA thermal expansion versus temperature at the inlet region (14.6 to 14.9 mm) with the scale bar of 10 µm………………………...………………….…...127
Figure 6-6 Histogram of DNA length without electric field strength at different temperatures (a) 25°C, (b) 35°C, (c) 45°C, and (d) 55°C……………………………………………...……….…128
Figure 6-7 Histogram of the stretch ratio of DNA molecule after deducting the thermal expansion effect at Ex = 10 kV/m at different temperatures. Inlet region: (a) 25°C, (b) 35°C, (c) 45°C, and (d) 55°C. Middle region: (e) 25°C, (f) 35°C, (g) 45°C, and (h) 55°C…………………………………………………….....…129
Figure 6-8 Stretching portions of the force-extension curves as a function of temperature (a) Maximum DNA molecule hydrodynamic force versus extension after deducting the thermal expansion effect (b) Hydrodynamic force of the present study versus the force law from the WLC model………………….…………………..…130
Figure 6-9 DNA molecules stretch ratio distribution at different electric field and width in microchannel (x = 1000 μm) shows the maximum contour length in each case……………………………..……131
Figure 6-10 Surface contact angle (a) with CNT film (b) clean glass surface……….……………………………...…………..…132
Figure 6-11 DNA molecules hook at fix point of CNT and take the continuous images by TIRFM system (x = 425-575 μm, Ex = 5 kV/m) ….………………………………………..……...…133
Figure 6-12 DNA molecules local velocity at vertical position at distance of 1000 μm downstream with different electric fields in two different nanochannels. (a) width: 50 μm (b) width: 400 μm……………..…………………………...……………….134
Figure 6-13 3D velocity field distribution at different electric fields. (a) width = 50 μm (b) width = 400 μm……………...…………....……135
Figure 6-14 Maximum stretching ratio versus Wi……………..…...……136
參考文獻 References
REFERENCES
1. V. S. Oystein, S. Olav and H. Knut, 2010, "Physiology of domestic animals," 2 nd ed., Scandinavian Veterinary Press, pp. 39-42.
2. National Research Council Committee, 1996, "The evaluation of forensic DNA evidence," National Academy Press, Washington DC, pp. 61-63.
3. P. G. de Gennes and J. Prost, 1974, "The physics of liquid crystals," Oxford University Press, London.
4. J. G. Santiago, S. T. Wereley, C. D. Meinhart, D. J. Beebe, and R. J. Adrian, 1998, "A particle image velocimetry system for microfluidics," Experiments in Fluids, Vol. 25, pp. 316-319.
5. R. Lindken, M. Rossi, S. Große, and J. Westerweel, 2009,"Micro-particle image velocimetry (µPIV): Recent developments, applications, and guidelines," Lab on a Chip, Vol. 9, pp. 2551-2567.
6. C. D. Meinhart, S. T. Wereley, and J. G. Santiago, 1999, "PIV measurements of a microchannel flow," Experiments in Fluids, Vol. 27, pp. 414-419.
7. S. T. Wereley and C. D. Meinhart, 2010,"Recent Advances in Micro-Particle Image Velocimetry," Annual Review of Fluid Mechanics, Vol. 42, pp. 557-576.
8. R. Lima, S. Wada, S. Tanaka, M. Takeda, T. Ishikawa, K. Tsubota, Y. Imai, T. Yamaguchi, 2008,"In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system," Biomedical Microdevices, Vol. 10, pp. 153-167.
9. D. Yan, N. T. Nguyen, C. Yang, and X. Huang, 2006, "Visualizing the transient electroosmotic flow and measuring the zeta potential of microchannels with a micro-PIV technique," The Journal of Chemical Physics, Vol. 124, pp. 021103.
10. C. V. Nguyen, J. Carberry, and A. Fouras, 2012, "Volumetric-correlation PIV to measure particle concentration and velocity of microflows," Experiments in Fluids, Vol. 52, pp. 663-677.
11. S. M. Hagsater, A. Lenshof, P. Skafte-Pedersen, J. P. Kutter, T. Laurell and H. Bruus, 2008, "Acoustic resonances in straight micro channels: Beyond the 1D-approximation," Lab on a Chip, Vol. 8, pp. 1178–1184.
12. Y. Liu, M. G. Olsen and R. O. Fox, 2009,"Turbulence in a microscale planar confined impinging-jets reactor," Lab on a Chip, Vol. 9, pp. 1110–1118.
13. H.W. Lu, F. Bottausci, J. D. Fowler, A. L. Bertozzi, C. Meinhart and C. J. C. Kim, 2008, "A study of EWOD-driven droplets by PIV investigation," Lab on a Chip, Vol. 8, pp. 456–461.
14. H. Kinoshita, S. Kaneda, T. Fujii and M. Oshima, 2007, "Three-dimensional measurement and visualization of internal flow of a moving droplet using confocal micro-PIV," Lab on a Chip, Vol. 7, pp. 338–346.
15. C. M. Zettner, M. Yoda, 2003,"Particle velocity field measurements in a near-wall flow using evanescent wave illumination," Experiments in Fluids, Vol. 34, pp. 115-121.
16. R. Sadr, H. Li, and M. Yoda, 2005, "Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination," Experiments in Fluids, Vol. 38, pp. 90–98.
17. S. Pouya, M. Koochesfahani, P. Snee, M. Bawendi, and D. Nocera, 2005, "Single quantum dot (QD) imaging of fluid flow near surfaces," Experiments in Fluids, Vol. 39, pp. 784-786.
18. N. C. H. Le, R. Yokokawa, D. V. Dao, T. D. Nguyen, J. Wells, and S. Sugiyama, 2007, "Application of an integrated microfluidic total internal reflection (TIR)-based chip to nano-particle image velocimetry (nano-PIV)," IEEE SENSORS 2007 Conference, pp. 454-457.
19. H. F. Li and M. Yoda, 2009, "Multilayer nano-particle image velocimetry (MnPIV) in microscale Poiseuille flows," Measurement Science and Technology, Vol. 19, pp-075402.
20. O. I. Vinogradova, K. Koynov, A. Best, and F. Feuillebois, 2009, "Direct measurements of hydrophobic slippage using double-focus fluorescence cross-correlation," Physical Review Letters, Vol. 102, pp. 118302.
21. C. Kuang and G. Wang, 2010, "A novel far-field nanoscopic velocimetry for nanofluidics," Lab on a Chip, Vol. 10, pp. 240-245.
22. O. I. Vinogradova and A. V. Belyaev, 2011, "Wetting, roughness and flow boundary conditions," Journal of Physics: Condensed Matter, Vol. 23, pp. 184104.
23. Z. Chen, D.T. Burke, and M. A. Burns, 2006,"Imaging cross-section of DNA electrophoresis in a microfabricated glass device with CLSM," Proceedings of the 28th IEEE EMBS Annual International Conference New York City, USA, Aug 30-Sept 3, pp. 4307-4309.
24. L. S. Ploeger, J. A.M. Beliën, N. M. Poulin, W. Grizzle, and P. J. Diest, 2004, "Confocal 3D DNA Cytometry: Assessment of Required Coefficient of Variation by Computer Simulation," Cellular Oncology, Vol. 26, pp. 93–99.
25. M. Reuter, D. T. F. Dryden, "The kinetics of YOYO-1 intercalation into single molecules of double-stranded DNA," Biochemical and Biophysical Research Communications, 2010, Vol. 403, pp. 225-229.
26. H. Brutzer, F. W. Schwarz, and R. Seidel, 2012,"Scanning evanescent fields using a pointlike light source and a nanomechanical DNA gear," Nano Letter, Vol. 12, pp. 473−478.
27. K. Kanda, S. Ogata, K. Jingu, and M. Yang, 2007, "Measurement of particle distribution in microchannel flow using a 3D-TIRFM technique," Journal of Visualization, Vol. 10, pp. 207-215.
28. G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, 1992, "Total internal reflection fluorescence microscopy (TIRFM) II. topographical mapping of relative cell/substratum separation distances," Journal of Cell Science, Vol. 103, pp. 491-499.
29. N. L. Thompson and B. C. Lagerholm, 1997, "Total internal reflection fluorescence: applications in cellular biophysics," Current Opinion in Biotechnology, Vol. 8, pp. 58-64.
30. S. Jeong, S. K. Park, J. K. Chang, and S. H. Kang, 2005, "Ultra-sensitive real-time single-DNA molecules detection at a fused-silica/water interface using TIRFM technique," Bulletin of the Korean Chemical Society, Vol. 26, pp. 979-982.
31. S. H. Kang, Y. J. Kim, and E. S. Yeung, 2007, "Detection of single-molecule DNA hybridization by using dual-color total internal reflection fluorescence microscopy," Analytical and Bioanalytical Chemistry, Vol. 387, pp. 2663-2671.
32. S. H. Kang, S. Jeong, D. Kim, Y. He, and E. S. Yeung, 2005, "Femtomol single-DNA molecules analysis by electro field strength in a microfluidic chip using TIRFM," Bulletin of the Korean Chemical Society, Vol. 26, pp. 315-318.
33. R. Sadr, H. Li, M. Yoda, 2005, "Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination," Experiments in Fluids, Vol. 38, pp. 90-98.
34. G. J. Ma, C. W. Wu and P. Zhou, 2007, "Wall slip and hydrodynamics of two-dimensional journal bearing," Tribology International, Vol. 40, pp. 1056-1066.
35. N. C. Le, R. Yokokawa, D. V. Dao, T. D. Nguyen, J. Wells, and S. Sugiyama, 2007, "Application of an integrated microfluidic total internal reflection (TIR)-based chip to nano-particle image velocimetry (nano-PIV)," IEEE SENSORS 2007 Conference.
36. H. F. Li and M. Yoda, 2008, "Multilayer nano-particle image velocimetry (MnPIV) in microscale poiseuille flows," Measurement Science and Technology, Vol. 19, 075402 (9pp).
37. M. Z. Ralf and C.C. Edward, "DNA stretching on functionalized gold surfaces, 1994," Nucleic Acids Research, Vol. 22, pp. 492-497.
38. Smith, L. Finzi, and C. Bustamante, 1992, "Direct mechanical measurements of the elasticity of single DNA molecules by using magnetic beads," Science, Vol. 258, pp. 1122-1126.
39. H. Zhou, Y. Zhang, and Z. O. Yang, 2000, "Elastic property of single double-stranded DNA molecules: theoretical study and comparison with experiments," Physical Review E, Vol. 62, pp. 1045-1058.
40. K. Keren, R. S. Berman, E. Buchstab,U. Sivan, and E. Braun. 2003, "DNA-templated carbon nanotube field-effect transistor," Science, Vol. 302, pp. 1380-1382.
41. B. Ladoux and P. S. Doyle, 2003, "Stretching tethered DNA chains in shear flow," Europhysics Letters, Vol 52, pp. 511-517.
42. J. Zheng, H. W. Li, and E. S. Yeung, 2004, "Manipulation of single DNA molecules via lateral focusing in a PDMS/glass microchannel,"The Journal of Physical Chemistry B, Vol. 108, pp. 10357-10362.
43. G. C. Randall, K. M. Schultz, P. S.Doyle, 2007 "Methods to electrophoretically stretch DNA: microcontractions, gels, and hybrid gel-microcontraction devices," Lab on a Chip, Vol. 6, pp. 516-525.
44. C. C. Hsieh, A. Balducci, and P. S. Doyle, 2007, "An experimental study of DNA rotational relaxation time in nanoslits," Macromolecules, Vol. 40, pp. 5196-5205.
45. Y. Liu, Y. Jun, and V. Steinberg, 2007, "Department of longest relaxation times of double-stranded and single-stranded DNA," Macromolecules, Vol. 40, pp. 2172-2176.
46. C.A. Lueth and E. S. G. Shaqfeh, 2007, "Tethered DNA shear dynamics in the flow gradient plane: application to double tethering," Korea-Australia Rheology Journal, Vol. 19, pp. 141-146.
47. A. G. Balducci, J. Tang, and P. S. Doyle, 2008, "Electrophoretic stretching of dna molecules in cross-slot nanoslit channels," Macromolecules, Vol. 41, pp. 9914-9918.
48. F. Person and J. O. Tegenfeldt, 2010, "DNA in nanochannels-directly visualizing genomic information," Chemical Society Reviews, Vol. 39, pp. 985-999.
49. C. Deng, X. Hong, S. Zhang, X. Liu, and W. Ma, 2010, "DNA stretching on super-aligned carbon nanotube films," 2010 3rd International Conference on Biomedical Engineering and Informatics, pp. 199-202.
50. S. R. Goldstein, P. G. McQueen, and R. F. Bonner, 1998, "Thermal modeling of laser capture microdissection," Applied Optics, Vol. 37, pp. 7378-7391.
51. C. A. Lueth and E. S. G. Shaqfeh, 2009, "Experimental and Numerical Studies of tethered DNA shear dynamics in the flow-gradient plane," Macromolecules, Vol. 42, pp. 9170-9182.
52. K. Jo, Y. L. Chen, J. J. de Pablo, and D. C. Schwartz, 2009, "Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows," Lab Chip, Vol. 9, pp. 2348-2355.
53. E. Abad, A. Juarros, A. Retolaza, S. Merino, R. Marie and A. Kristensen, 2011, "DNA analysis by single molecule stretching in nanofluidic biochips," Microelectron. Eng., Vol. 88, pp. 300-304.
54. Y. Kim, K. S. Kim, K. L. Kounovsky, R. Chang, G. Y. Jung, G. Y. Jung, J. J. dePablo, K. Jo and D. C. Schwartz, 2011, "Nanochannel confinement: DNA stretch approaching full contour length," Lab on a Chip, Vol. 11, pp. 1721-1729.
55. G. Yu, A. Kushwaha, J. K. Lee, E. Shaqfeh, and Z. Bao, 2011, "The shear flow processing of controlled DNA tethering and stretching for organic molecular electronics," ACS Nano, Vol. 5, pp. 275-282.
56. K. Laube, K. Gunther, and M. Mertig, 2011, "Analysis of the fluctuations of a single-tethered, quantum-dot labeled DNA molecule in Shear Flow," Journal of Physics: Condensed Matter, Vol. 23, pp. 184119 (9pp).
57. S. Pan, D. At. Nguyen, P. Sunthar, T. Sridhar, and J. Ravi. Prakash, 2011, "The shear rheology of semi-dilute DNA solutions," CHEMECA 2011: Engineering a Better World: Sydney Hilton Hotel, NSW, Australia, September 2011.
58. S. H. Kim, Y. Cui, M. J. Lee, S-W. Nam, D. Oh, S. H. Kang, Y. S. Kim and S. Park, 2011, "Simple fabrication of hydrophilic nanochannels using the chemical bonding between activated ultrathin PDMS layer and cover glass by oxygen plasma," Lab on a Chip, Vol 11, pp. 348-353.
59. C. Liu, Y. Qu, Y. Luo, N. Fang, 2011, "Recent advances in single-molecule detection on micro- and nano-fluidic devices," Electrophoresis, Vol. 32, pp. 3308-3318.
60. X. Wang, S. Takebayashi, E. Bernardin, D. M. Gilbert, R. Chella, and J. Guan, 2012, "Microfluidic extraction and stretching of chromosomal DNA from single cell nuclei for DNA fluorescence in situ hybridization," Biomedical Microdevices, Vol. 14, pp. 443-451.
61. D. J. Mai, C. Brockman, and C. M. Schroeder, 2012, "Microfluidic systems for single DNA dynamics," Soft Matter, Vol. 8, pp. 10560-10572.
62. C. L. Henry and V. S. J. Craig, 2009, "Measurement of no-slip and slip boundary conditions in confined Newtonian fluids using atomic force microscopy," Physical Chemistry Chemical Physics, Vol. 11, pp. 9514-9521.
63. H.M. Park and H.S. Sohn, 2011, "Measurement of zeta potential of macroscopic surfaces with Navier velocity slip exploiting electrokinetic flows in a microchannel," International Journal of Heat and Mass Transfer, Vol. 54, pp- 3466-3475.
64. S. Chu, 1991, "Laser Manipulation of Atoms and Particles," Science, Vol. 253, pp. 861-866.
65. T. T. Perkins, D. Smith, and S. Chu, 1994, "Direct observation of tube-like motion of a single polymer chain," Science, Vol. 264, pp. 819-822.
66. T. T. Perkins, S. Quake, D. Smith, and S. Chu, 1994, "Relaxation of a Ssingle DNA molecule observed by optical microscopy," Science, Vol. 264, pp. 822-826.
67. C. Bustamante, J. F. Marko, E. D. Siggia, and S. Smith, 1994, "Entropic elasticity of lambda-phage DNA," Science, Vol. 265, pp. 1599-600.
68. T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu, 1995, "Stretching of a single tethered polymer in a uniform flow," Science, Vol. 268, pp. 83-87.
69. P. Cluzel, A. Lebrun, C. Heller, R. Lavery, J. L. Viovy, D. Chatenay, and F. Caron, 1996, "DNA: an extensible molecule," Science, Vol. 271, pp. 792-794.
70. S. B. Smith, Y. Chi, C. Bustamante, 1996, "Overstretching B-DNA: the elastic response of individual double-stranded and single-stranded DNA molecules," Science, Vol. 271, pp. 795-799.
71. H. G. Hansma, 1997, "Properties of biomolecules measured from atomicforce microscope images: a review," Journal of Structural Biology, Vol. 119, pp. 99-108.
72. T. Strick, J. F. Allemand, D. Bensimon, A. Bensimon, and V. Croquette, 1996, "The elasticity of a single supercoiled DNA molecule," Science, Vol. 271, pp. 1835-1837.
73. C. Gosse, and D. Wirtz, 2000, "Magnetic tweezers for DNA micromanipulation," Review of Scientific Instruments, Vol. 71, pp. 4561-4570.
74. C. Gosse, and V. Croquette, 2002, "Magnetic tweezers: micromanipulation and force measurement at the molecular level," Biophysical Journal, Vol. 82, pp. 3314-3329.
75. P. G. De Gennes, "Coil-stretch transition of dilute flexible polymers under ultrahigh velocity gradients," The Journal of Chemical Physics, Vol. 60, 1974, pp. 5030-5042
76. G. V. Shivashanlar, and A. Libchaber, 1997, "Single DNA molecule grafting and manipulation using a combined atomic force microscope and an optical tweezers," Applied Physics Letters, Vol. 71, pp. 3727-3729.
77. M. Gad, W. Mizutani, M. Machida, M. Ishikawa, 2000, "Method for stretching DNA molecules on mica surface in one direction for AFM imaging," Nucleic Acids Symposium Series, Vol. 44, pp. 215-216.
78. G. Binnig, C. F. Quate, and Ch. Gerber, 1986, "Atomic force microscope," Physical Review Letters, Vol. 56, pp. 930-933.
79. H. G. Hansma, D. E.Laney, M. Bezanilla, R. L. Sinsheimer, P. K. Hansma, 1995, "Applications for atomic force microscopy of DNA," Biophysical Journal, Vol. 68, pp. 1672-1677.
80. S. B. Smith, J. Liphardt, and D. Smith, 2000, "Single-molecule studies of DNA mechanics Carlos Bustamante," Nucleic Acids, Vol. 10, pp. 279-285.
81. M. J. Menasveta and D. A. Hoagland, 1991, "Light scattering from dilute polystyrene solutions in uniaxial elongational flow," Macromolecules, Vol. 24, pp. 3427-3433.
82. D. E. Smith, H. P. Babcock, and S. Chu, 1999, "Single-polymer dynamics in steady shear flow," Science, Vol. 283, pp. 1724-1727.
83. E. C. Lee, M, J, Solomon, and S. J. Muller, 1997, "Molecular orientation and deformation of polymer solutions under shear: a flow light scattering study," Macromolecules, Vol. 30. pp. 7313-7321.
84. E. C. Lee and S. J. Muller, 1999, "Flow light scattering studies of polymer coil conformation in solutions in extensional flow," Macromolecules, Vol. 32, pp. 3295-3305.
85. D. E. Smith and S. Chu, 1998, "Response of flexible polymers to a sudden elongational flow,"Science, Vol. 281, pp. 1335-1339.
86. J. L. Lumley, 1969, "Drag reduction by additives," Annual Review of Fluid Mechanics, Vol. 1, pp. 367-383.
87. P. LeDuc, C. Haber, G. Bao, and D. Wirtz, 1999, "Dynamics of individual flexible polymers in a shear flow," Nature, Vol. 399, pp. 564-566.
88. G. H. Mckinley and T. Sridhar, 2002, "Filament-stretching rheometry of complex fluids," Annual Review of Fluid Mechanics, Vol. 34, pp. 375-415.
89. R. G. Larson, 1999, "The structure and rheology of complex fluid," Oxford University Press, New York.
90. G. G. Fuller, 1995, "Optical rheometry of complex fluids," Oxford University Press, New York.
91. H. C. Ottinger, 1996, "Stochastic processes in polymeric fluids," Springer, Berlin.
92. R. W. Sabnis, 2010, "Handbook of biological dyes and stains: synthesis and industrial applications," John Wiley & Sons, New Jersey.
93. J. Muzikar, G. Rozing, T. van de Goor, C. Eberwein, E. Kenndler, 2002, "Analysis of dimeric cyanine–nucleic acid dyes by capillary zone electrophoresis in N,N-dimethylacetamide as non-aqueous organic solvent," Journal of Chromatography A, Vol. 950, pp. 249-255.
94. S. K. Shukla, J. Kislow, A. Briska, J. Henkhaus, and C. Dykes, 2009, "Optical mapping reveals a large genetic inversion between two methicillin-resistant staphylococcus aureus strains," Journal of Bacteriology, Vol. 191, pp. 5717-5723.
95. A. S. Tatikolov, 2012, "Polymethine dyes as spectral-fluorescent probes for biomacromolecules," Journal of Photochemistry and Photobiology C: Photochemistry Reviews, Vol. 13, pp. 55-90.
96. A. S. Mohamad, J. C. G. Jeynes, and M. P. Hughes, 2012, "Dielectrophoresis of poly AT and poly GC DNA nanomanipulation," 12th IEEE International Conference on Nanotechnology, 20-23 August 20112, Birmingham, United Kingdom, pp. 1-4.
97. F. Ciardelli, M. Bertoldo, S. Bronco, A. Pucci, G. Ruggeri, and F. Signori, 2012, "The unique optical behaviour of bio-related materials with organic chromophores," Polymer International, Vol. 62, pp. 22-32.
98. A. S. Mohamad, J. C. G. Jeynes, and M. P. Hughes, 2014, "Dielectrophoretic response of DNA shows different conduction mechanisms for poly(dG)-poly(dC) and poly(dA)-poly(dT) in solution," NanoBioscience, Vol. 13, pp. 51-54.
99. M.I. Viseu, A. S. Tatikolov, R. F. Correia, S. M.B. Costa, 2014, " Time evolution of monomers and aggregates of a polymethine dye probe the dynamics of model vesicles and micelles," Journal of Photochemistry and Photobiology A: Chemistry, Vol. 280, pp. 54-62.
100. K. Nikolova, S. Kaloyanova, N. Mihaylova, S. Stoitsova, S. Chausheva, A. Vasilev, N. Lesev, P. Dimitrova, T. Deligeorgiev, A. Tchorbanova, 2013, "New fluorogenic dyes for analysis of cellular processes by flow cytometry and confocal microscopy," Journal of Photochemistry and Photobiology B: Biology, Vol. 129, pp. 125-134.
101. S. T. Wereley, C. D. Meinhart 2010, "Recent advances in micro-particle image velocimetry," Annual Review of Fluid Mechanics, Vol. 42, pp. 557-576.
102. Available from http://www.dantecdynamics.com/measurement-principles-of-piv. [accessed 10.11.2015]
103. S. T. Wereley, C. D. Meinhart 2010, "Recent advances in micro-particle image velocimetry," Annual Review of Fluid Mechanics, Vol. 42, pp. 557-576.
104. M. Raffel, C.Willert, J. Kompenhans, 1998, "Particle image velocimetry: a practical guide, "Springer, Berlin.
105. Y. Sugii, S. Nishio and K. Okamoto, 2002, "In vivo PIV measurement of red blood cell velocity field in microvessels considering mesentery motion,"Physiological Measurement, Vol. 23, pp. 403-416.
106. D. C. Tretheway and C. D. Meinhart, 2002, "Apparent fluid slip at hydrophobic microchannel walls," Physics of Fluids, Vol. 14, pp. L9-L12.
107. S. W. Stone, C. D. Meinhart and S. T. Wereley, 2002, "A microfluidic-based nanoscope" Experiments in Fluids, Vol. 33, pp. 613-619.
108. R. Sadr, M. Yoda, Z. Zheng and A. T. Conlisk, 2004, "An experimental study of electro-osmotic flow in rectangular microchannels," Journal of Fluid Mechanics, Vol. 506, pp. 357-367.
109. A. Ponti, M. Machacek, S. L. Gupton, C. M. Waterman-Storer and G. Danuser, 2004,"Two distinct actin networks drive the protrusion of migrating cells," Science, Vol. 305, pp. 1782-1786.
110. K. D. Kihm, A. Banerjee, C. K. Choi and T. Takagi, 2004, "Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM),"Experiments in Fluids, Vol. 37, pp. 811-824.
111. S. Jin, P. Huang, J. Park, J. Y. Yoo and K. S. Breuer, 2004, "Near-surface velocimetry using evanescent wave illumination," Experiments in Fluids, Vol. 37, pp.825-833.
112. S. S. Hsieh, C. Y. Lin, C. F. Huang and H. H. Tsai, 2004, "Liquid flow in a microchannel," Journal of Micromechanics and Microengineering, Vol. 14, pp. 436-445.
113. S. S. Hsieh, H. H. Tsai , "MPIV Liquid Microjets Measurements, "An Invited Paper in Celebration of Prof. C. K. Chen’s 70th Birthday, Chinese Journal of Mechanical Engineering, Vol. 26, 2005, pp. 55-64.
114. D. Z. Wang, M. Sigurdson and C. D. Meinhart, 2005, "Experimental analysis of particle and fluid motion in ac electrokinetics," Experiments in Fluids, Vol. 38, pp. 1-10.
115. H. W. Gai, Y. Li, Z. Silber-Li, Y. F. Ma and B. C. Lin, 2005, "Simultaneous measurements of the flow velocities in a microchannel by wide/evanescent field illuminations with particle/single molecules," Lab on a Chip, Vol. 5, pp. 443-449.
116. P. Joseph and P. Tabeling, 2005, "Direct measurement of the apparent slip length," Physical Review E, Vol. 71, pp. 035303.
117. J. Ou and J. P. Rothstein, 2005, "Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces," Physics of Fluids, Vol. 17, pp. 103606.
118. L. Kim, M. D. Vahey, H. Y. Lee and J. Voldman, 2006, "Microfluidic arrays for logarithmically perfused embryonic stem cell culture," Lab on a Chip, Vol. 6, pp. 394-406.
119. P. Huang, J. S. Guasto and K. S. Breuer, 2006, "Direct measurement of slip velocities using three-dimensional total internal reflection velocimetry," Journal of Fluid Mechanics, Vol. 566, 447-464.
120. S. S. Hsieh, H. C. Lin and C. Y. Lin, 2006, "Electroosmotic flow velocity measurements in a square microchannel," Colloid and Polymer Science, Vol. 284, pp. 1275-1286.
121. J. H. Jeong, Y. Sugii, M. Minamiyama, H. Takeuchi and K. Okamoto, 2007, "Interaction between liposomes and RBC in microvessels in vivo," Microvascular Research, Vol. 73, pp. 39-47.
122. R. Sadr, C. Hohenegger, H. F. Li, P. J. Mucha and M. Yoda, 2007, "Diffusion-induced bias in near-wall velocimetry," Journal of Fluid Mechanics, Vol. 577, pp. 443-456.
123. C. K. Choi, C. H. Margraves and K. D. Kihm, 2007, "Examination of near-wall hindered Brownian diffusion of nanoparticles: Experimental comparison to theories by Brenner (1961) and Goldman et al. (1967)," Physics of Fluids, Vol. 19, pp. 103305.
124. P. Huang and K. S. Breuer, 2007, "Direct measurement of slip length in electrolyte solutions," Physics of Fluids, Vol. 19, pp. 028104.
125. J. Westerweel, "On velocity gradients in PIV interrogation," 2008, Experiments in Fluids, Vol. 44, pp. 831-842.
126. C. I. Bouzigues, L. Bocquet, E. Charlaix, C. Cottin-Bizonne, B. Cross, L. Joly, A. Steinberger, C. Ybert and P. Tabeling, 2008, "Using surface force apparatus, diffusion and velocimetry to measure slip lengths," Philosophical transactions. Series A, Mathematical, physical, and engineering sciences, Vol. 366, pp. 1455-1468.
127. S. Pouya, M. M. Koochesfahani, A. B. Greytak, M. G. Bawendi and D. G. Nocera, 2008, "Experimental evidence of diffusion-induced bias in near-wall velocimetry using quantum dot measurements,"Experiments in Fluids, Vol. 44, pp. 1035-1038.
128. S. S. Hsieh and T. K. Yang, 2008, "Electroosmotic flow in rectangular microchannels with joule heating effects," Journal of Micromechanics and Microengineering, Vol. 18, 025025 (11pp).
129. S. S. Hsieh and Y. C. Huang, 2008, "Passive mixing in micro-channels withgeometric variations through μPIV and μLIF measurements," Journal of Micromechanics and Microengineering, Vol. 18, pp. 065017 (11pp).
130. J. G. Hong, J. B. Edel, and A. I. Demello, 2009,"Micro- and nanofluidic systems for high-throughput biological screening," Drug Discovery Today, Vol. 14, pp. 134-146.
131. M. Rossi, R. Lindken, B. P. Hierck and J. Westerweel, 2009, "Tapered microfluidic chip for the study of biochemical and mechanical response at subcellular level of endothelial cells to shear flow," Lab on a Chip, Vol. 9, pp. 1403-1411.
132. S. S. Hsieh, J. H. Chen, and G. C. Su, 2012, "Visualization and euantification of chaotic mixing for helical-type micromixers," Colloid and Polymer Science, Vol. 290, pp. 1547-1559.
133. S. S. Hsieh, J. W. Lin, and J. H. Chen, 2013, "Mixing efficiency of Y-type micromixers with different angles," International Journal of Heat and Fluid Flow, Vol. 6, pp. 130-139.
134. Available from http://www.olympusfluoview.com/theory/ confocalintro.html [accessed 10.11.2015]
135. Available from http://microscopy.berkeley.edu/courses/tlm/clsm/ index.html [accessed 10.11.2015]
136. C. Ockleford, 1995, "The confocal laser scanning microscope (CLSM)," The Journal of pathology, Vol. 176, pp. 1-2.
137. A. Gerger, S. Koller, T. Kern, C. Massone, K. Steiger, E. Richtig, H. Kerl and J. Smolle, 2005, "Diagnostic Applicability of In Vivo Confocal Laser Scanning Microscopy in Melanocytic Skin Tumors,"Journal of Investigative Dermatology, Vol. 124, pp. 493-498.
138. F. Depypere, P. Van Oostveldt, J. G. Pieters, and K. Dewettinck, 2009, "Quantification of microparticle coating quality by confocal laser scanning microscopy (CLSM)," European Journal of Pharmaceutics and Biopharmaceutics, Vol. 73, pp. 179-186.
139. A. Mauko, T. Muck, B. Mirtič, A. Mladenovič, and M. Kreft, 2009, "Use of confocal laser scanning microscopy (CLSM) for the characterization of porosity in marble," Materials Characterization, Vol. 60, pp. 603-609.
140. G. J. H. Müeh, J. Rüehlmann, M.O. Goebel, and J. Bachmann, 2011, "Application of confocal laser scanning microscopy (CLSM) to visualize the effect of porous media wettability on unsaturated pore water configuration," Journal of Soils and Sediments, Vol. 12, pp. 75-85.
141. G. Rothmund1, E. C. Sattler, R. Kaestle, C. Fischer, C. J. Haas, H. Starz, and J. Welzel, 2013, "Confocal laser scanning microscopy as a new valuable tool in the diagnosis of onychomycosis–comparison of six diagnostic methods," Mycoses, Vol. 56, pp. 47-55.
142. M. S. Kuyukina, I. B. Ivshinaa, I. O. Korshunova, and E. V. Rubtsov,2014, "Assessment of bacterial resistance to organic solvents using a combined confocal laser scanning and atomic force microscopy (CLSM/AFM)," Journal of Microbiological Methods, Vol. 107, pp. 23-29.Ockleford
143. Available from coil.bio.ed.ac.uk/Presentations/Confocal2013.ppt [accessed 11.06.2015]
144. E. J. Ambrose, 1956, "A surface contact microscope for the study of cell movements," Nature, Vol. 178, pp. 1194.
145. D. Axelrod, 1981, "Cell-substrate contacts illuminated by total internal reflection fluorescence," The Journal of Cell Biology, Vol. 89, 141-145.
146. Y. Sako, S. Minoghchi, T. Yanagida, 2000, "Single-molecule imaging of EGFR signalling on the surface of living cells," Nature Cell Biology, Vol. 2, pp. 168-172.
147. A. E. Brown, A. Hategan, D. Safer, Y. E. Goldman , D. E. Discher, 2009, "Cross-correlated TIRF/AFM reveals asymmetric distribution of force-generating heads along self-assembled, "synthetic" myosin filaments," Biophysical Journal, Vol. 5, pp. 1952-1960.
148. A. E. Brown, A. Hategan, D. Safer, Y. E. Goldman, D. E. Discher, 2009, "Cross-correlated tirf/afm reveals asymmetric distribution of forcegenerating heads along self-assembled, synthetic myosin filaments," Biophysical Journal, Vol. 96, pp. 1952-1960.
149. D. Axelrod, 2001, "Total Internal Reflection Fluorescence Microscopy in Cell Biology," Traffic, Vol. 2, pp.764-774.
150. Available from http://olympus.magnet.fsu.edu/primer/techniques/ fluorescence/tirf/tirfintro.html [accessed 10.11.2015]
151. D.Axelrod, 1990, "Total internal reflection fluorescence at biological surfaces, in Noninvasive techniques in cell biology," Wiley-Liss, New York, New York.
152. M.Tokunaga, T.Yanagida, 1997, "Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy," Biochemical and Biophysical Research Communications, Vol. 235, pp. 47–53.
153. J. Steyer and W. Almers, 1997, "Transport, docking and exocytosis of single secretory granules in live chromaffin cells," Nature, Vol. 388, pp. 474.
154. R. Haugland, 1997, "Handbook of Fluorescent Probes and Research Chemicals," 6th ed., Molecular Probes Inc., Eugene, Oregon.
155. Y. Kawano and R. G. Enders - Olympus America, Inc., Two Corporate Center Drive, Melville, New York, pp. 11747.
156. G. A. Truskey, J. S. Burmeister, E. Grapa, and W. M. Reichert, 1992, "Total internal reflection fluorescence microscopy (TIRFM). II. Topographical mapping of relative cell/substratum separation distances," Journal of cell science, Vol. 103, pp. 491-499.
157. A. Primer, High Performance Capillary Electrophoresis. Germany. Copyright, 2009. 174 s. 5990-3777EN.
158. W. Kok, 2000, "Capillary electrophoresis: instrumentation and operation," Chromatographia, Vol. 51, pp. S10-S14.
159. K. D. Lukacs, J. W. Jorgenson, 1985, "Capillary zone electrophoresis: Effect of physical parameters on separation efficiency and quantitation," Journal of High Resolution Chromatography, Vol. 8, pp. 407-411.
160. H. H. Lauer, D. McManigill, 1986, "Capillary zone electrophoresis of proteins in untreated fused silica tubing," Analytical Chemistry, Vol. 58, pp. 166-170.
161. X. Huang, M. J. Gordon, and R. N. Zare, 1988, "Bias in quantitative capillary zone electrophoresis caused by electrokinetic sample injection," Analytical Chemistry, Vol. 60, pp. 375-377.
162. F. Kilar, S. Hjérten, 1989, "Fast and high-resolution analysis of human serum transferrin by high-performance isoelectric focusing in capillaries," Electrophoresis, Vol. 10, pp. 23-29.
163. A. G. Ewing, R. A.Wallingford, and T. M. Olefirowicz, 1989,"Capillary electrophoresis," Analytical Chemistry, Vol. 61, pp. 292A-303A.
164. M. Zhu, D. L. Hansen, S. Burd, and F. Gannon, 1989, "Factors affecting free zone electrophoresis and isoelectric focusing in capillary electrophoresis," Journal of Chromatography A, Vol. 480, pp. 311-319.
165. E. Grushka, R. M. McCormick , J. J. Kirkland, 1989, "Effect of temperature gradients on the efficiency of capillary zone electrophoresis separations," Analytical Chemistry, Vol. 61, pp. 241-246.
166. X. Huang, W. F. Coleman, R. N. Zare, 1989,"Analysis of factors causing peak broadening in capillary zone electrophoresis," Journal of Chromatography A, Vol. 480, pp. 95-110.
167. B. L. Karger, A. S. Cohen, A. Guttman, 1989, "High performance capillary electrophoresis in the biological sciences”, Journal of Chromatography A, Vol. 492, pp. 585-614.
168. S. Terabe, 1989, "Electrokinetic chromatography: an interface between electrophoresis and chromatography," Trends in Analytical Chemistry, Vol. 8, pp. 129-134.
169. B. B. Van Orman, G. G. Liversidge, G. L. McIntyre, T. M. Olefirowicz, A. G. Ewing, 1990, "Effects of buffer composition on electroosmotic flow in capillary electrophoresis," Journal of Microcolumn Separations, Vol. 2, pp. 176-180.
170. S. A. Swedberg, 1990, "Use of non-ionic and zwitterionic surfactants to enhance selectivity in high performance capillary electrophoresis. An apparent micellar electrokinetic capillary chromatography mechanism," Journal of Chromatography A, Vol. 503, pp. 449-452.
171. S. Hjérten, 1990, "Zone broadening in electrophoresis with special reference to high performance electrophoresis in capillaries: An interplay between theory and practice," Electrophoresis, Vol. 11, pp. 665-690.
172. S. A. Swedberg, 1990, "Characterization of protein behavior in high performance capillary electrophoresis using a novel capillary system," Analytical Biochemistry, Vol. 185, pp. 51-56.
173. A. Guttman, A.S. Cohen, D.N. Heiger, B.L. Karger, 1990, "Analytical and micropreparative ultrahigh resolution of oligonucleotides by polyacrylamide gel high performance capillary electrophoresis," Analytical Chemistry, Vol. 62, pp. 137-146.
174. D. N. Heiger, A. S. Cohen, B. L. Karger, 1990, "Separation of DNA restriction fragments by high performance capillary electrophoresis with low and zero crosslinked polyacrylamide using continuous and pulsed electric fields," Journal of Chromatography A, Vol. 516, pp. 33-48.
175. T. Wehr, M. Zhu, R. Rodriguez, D. Burke, K. Duncan, 1990, "High performance isoelectric focusing using capillary electrophoresis instrumentation", American Biotechnology Laboratory, Vol. 8, pp. 22.
176. R. L. Chien, D. S. Burgi, 1991, "Field-amplified sample injection in high performance capillary electrophoresis," Journal of Chromatography A, Vol. 559, pp. 141-152.
177. A. Vinther, H. Soeberg, 1991, "Temperature elevations of the sample zone in free solution capillary electrophoresis under stacking conditions," Journal of Chromatography A, Vol. 559, pp. 27-42.
178. J. Kohr, H. Engelhardt, 1991, "Capillary electrophoresis with surface coated capillaries," Journal of Microcolumn Separations, Vol. 3, pp. 491-495.
179. D. M. Northrop, D. E. Martire, W. A. MacCrehan, 1991, "Separation and identification of organic gunshot and explosive constituents by micellar electrokinetic capillary electrophoresis," Analytical Chemistry, Vol. 63, pp. 1038-1042.
180. M. T. Ackermans, F. M. Everaerts, J. L. Beckers, 1991,"Quantitative analysis in capillary zone electrophoresis with conductivity and indirect UV detection," Journal of Chromatography A, Vol. 549, pp. 345-355.
181. R. S. Rush, A. S. Cohen, B. L. Karger, 1991, "Influence of column temperature on the electrophoretic behavior of myoglobin and alpha-lactalbumin in high performance capillary electrophoresis," Analytical Chemistry, Vol. 63, pp. 1346-1350.
182. Y. F. Maa, K. J. Hyver, S. A. Swedberg, 1991, "Impact of wall modifications on protein elution in high performance capillary electrophoresis," Journal of High Resolution Chromatography, Vol. 14, pp. 65-67.
183. R. Weinberger, I. S. Lurie, 1991, "Micellar electrokinetic capillary chromatrography of illicit drug substances," Analytical Chemistry, Vol. 63, pp. 823-827.
184. A. D. Tran, S. Park, P. J. Lisi, O.T. Huynh, R. R. Ryall, P. A. Lane, 1991, "Separation of carbohydrate-mediated microheterogeneity of recombinant human erythropoietin by free solution capillary electrophoresis. Effects of pH, buffer type, and organic additives," Journal of Chromatography A, Vol. 542, pp. 459-471.
185. P. Jandik, W. R. Jones, A. Weston, P. R. Brown, 1991, "Electrophoretic capillary ion analysis: Origins, principles, and applications," LC-GC International, Vol. 5, pp. 20-27.
186. T. Wehr, M. Zhu, R. Rodriguez, D. Burke, K. Duncan, 1990, "High performance isoelectric focusing using capillary electrophoresis instrumentation", American Biotechnology Laboratory, Vol. 8, pp. 22.
187. R. L. Chien, D. S. Burgi, 1991, "Field-amplified sample injection in high performance capillary electrophoresis," Journal of Chromatography A, Vol. 559, pp. 141-152.
188. A. Vinther, H. Soeberg, 1991, "Temperature elevations of the sample zone in free solution capillary electrophoresis under stacking conditions," Journal of Chromatography A, Vol. 559, pp. 27-42.
189. J. Kohr, H. Engelhardt, 1991, "Capillary electrophoresis with surface coated capillaries," Journal of Microcolumn Separations, Vol. 3, pp. 491-495.
190. R. Kuhn, F. Stoecklin, F. Erni, 1992, "Chiral separations by hostguest complexation with cyclodextrin and crown ether in capillary zone electrophoresis," Chromatographia, Vol. 33, pp. 32-36.
191. S. Honda, A. Taga, K. Kakehi, S. Koda, Y. Okamoto, 1992,"Determination of cefixime and its metabolites by high performance capillary electrophoresis," Journal of Chromatography A, Vol. 590, pp. 364-368
192. W.C. Brumley, 1992, "Qualitative analysis of environmental samples for aromatic sulfonic acids by high-performance electrophoresis," Journal of Chromatography A, Vol. 603, pp. 267-272.
193. Available from http://www.invitrogen.com. [Accessed 11.20.2008]
194. Available from http://www.olympus114.com/ctlg/UIS2_cubes.pdf [Accessed 07.25.2015]
195. L. E. Rodd, T. P. Scott, D. V. Boger, J. J. Cooper-White, and G. H. McKinley, 2005, "The inertio-elastic planar entry flow of low-viscosity elastic fluids in micro-fabricated geometries," Journal of Non-Newtonian Fluid Mechanics, Vol. 129, pp. 1-22.
196. L. E. Rodd, J. J. Cooper-White, D. V. Boger, and G. H. McKinley, 2007, "Role of the elasticity number in the entry flow of dilute polymer solutions in micro-fabricated contraction geometries," Journal of Non-Newtonian Fluid Mechanics, Vol. 143, pp. 170-191.
197. R. G. Larson, 2005, "The rheology of dilute solutions of flexible polymers: progress and problems," Journal of Rheology, Vol. 49, pp. 1-70.
198. S. Li, and B. Sun, "Advances in Soft Matter Mechanics," Springer, 2012, pp. 6-10.
199. C. Bustamante, Z. Bryant and S. B. Smith, "Ten years of tension: single-molecule DNA mechanics," Nature, 2003, Vol. 42, pp. 423-427.
200. J. Wang and C. Lu, "Single molecule λ-DNA stretching studied by microfluidics and single particle tracking," Journal of applied physics, 2007, Vol. 102, pp. 074703.
201. S. B. Smith, L. Finzi, C. Bustamante, 1992, "Direct mechanical measurement of the elasticity of single DNA molecules by using magnetic beads," Science, Vol. 258, pp. 1122-1126.
202. J. F. Marko, E. D. Siggia, 1995, "Stretching DNA," Macromolecule, Vol. 28: 8759-8770.
203. P. J. Flory, 1969, "Statistical mechanics of chain molecules," Interscience Publishers, New York.
204. P. R. Bevington, 1969, "Data reduction and error analysis for the physical sciences", McGraw-Hill, New York, pp. 1-6.
205. S. S. T. Kline and F. A. McClintock, 1953, "Describing uncertainties in single-sample experiments," Mechanical Engineering, Vol. 75, pp. 3-8.
206. R. J. Moffat, 1982, "Contributions to the theory of single-sample uncertainty analysis," Journal of Fluids Engineering Transactions, ASME, Vol. 104, pp. 250-260.
207. R. J. Moffat, 1988, "Describing the uncertainties in experimental results," Experimental Thermal and Fluid Science, Vol. 1, pp. 3-17.
208. C. Y. Lin, "An experimental study of single/two phase flow in microchannels," PhD Dissertation, National Sun Yat-Sen University, 2009, pp. 55-56.
209. H. C. Wu, 2013, "An experimental study of micro direct methanol fuel cell stacks," PhD Dissertation, National Sun Yat-Sen University, pp. 179-181.
210. B. J. Kirby, 1979, "Micro-and nanoscale fluid mechanics-transport in micro fluidic devices," New York: Cambridge University Press.
211. A. E. Nkodo, J. M. Garnier, B. Tinland, H. Ren, C. Desruisseaux, L. C. McCormick, G. Drouin, G. W. Slater, 2001, "Diffusion coefficient of DNA molecules during free solution electrophoresis," Electrophoresis, Vol. 22, pp. 2424-2432.
212. H. Mao, J. R. Arias-Gonzalez, S. B. Smith, J. I. Tinoco, C. Bustamante, 2005, "Temperature control methods in a laser tweezers system," Biophysical Journal, Vol. 89, pp. 1308-1316.
213. D. Braun, A. Libchaber, 2002, "Trapping of DNA by thermophoretic depletion and convection," Physical Review Letters, Vol. 89, pp. 188103.
214. S. S. Hsieh, C. H. Liu, and J. H. Liou, 2007, "Dynamics of DNA molecules in a cross-slot microchannel," Measurement Science and Technology, Vol. 18, pp. 2907-2915.
215. S. S. Hsieh, and J. H. Liou, 2009, "DNA molecules dynamics in converging-diverging microchannels," Biotechnology and Applied Biochemistry, Vol. 52, pp. 29-40.
216. S. S. Hsieh, J. H. Chen, and C. F. Tsai, 2013, "DNA molecule stretching through thermo-electrophoresis and thermal convection in a heated converging-diverging microchannel," Nanoscale Research Letters, Vol. 8, pp. 87.
217. Mannion J. T., Reccius C. H., Cross J. D. and Craighead H. G. 2006, "Conformational analysis of single DNA molecules undergoing entropically induced motion in nanochannels," Biophysical Journal, Vol. 90, pp. 4538-4545.
218. N. Douville, D. Huh and S. Takayama, 2008, "DNA linearization through confinement in nanofluidic channels," Analytical and Bioanalytical Chemistry, Vol. 391, pp. 2395-409.
219. S. S. Hsieh, J. H. Chen, C. Y. Lin, and S. Y. Li, 2015, "DNA stretching on one-sided carbon nanotube (CNT) walls in microchannels," Journal of Physics D: Applied Physics, Vol. 48, pp. 135401.
220. H. Sato, Y. Masubuchi, H. Watanabe, 2009, "DNA diffusion in aqueous solution in presence of suspended particles," Journal of Polymer Science Part B: Polymer Physics, Vol. 47, pp. 1103–1111.
221. K. Schallhorn, M. Kim, P. C. Ke, 2008, "A single-molecule study on the structural damage of ultraviolet radiated DNA," International Journal of Molecular Sciences, Vol. 9, pp. 662-667.
222. D. E. Smith, T. T. Perkins, S. Chu, 1996, "Dynamical scaling of DNA diffusion coefficients," Macromolecules, Vol. 2, pp. 1372-1373.
223. M. C.Williams, J. R. Wenner, I. Rouzina, V. A. Bloomfield, 2001, "Entropy and heat capacity of DNA melting from temperature dependence of single molecule sketching,". Biophysical Journal, Vol. 80, pp. 1932-1939.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code