Responsive image
博碩士論文 etd-0712116-155045 詳細資訊
Title page for etd-0712116-155045
論文名稱
Title
窄線寬矽光子光柵元件的實現與應用
Narrowband silicon photonics grating devices and its application
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-22
繳交日期
Date of Submission
2016-08-12
關鍵字
Keywords
波導、布拉格光柵、積體光路元件、光譜反射響應
waveguide, Bragg grating, integrated optical device, optical spectrum
統計
Statistics
本論文已被瀏覽 5687 次,被下載 86
The thesis/dissertation has been browsed 5687 times, has been downloaded 86 times.
中文摘要
矽光子是以矽作為光電元件基材的新穎科學,可以藉由矽絕緣體晶片(Silicon on insulator)來實現,而從製程角度而言,和傳統積體電路製程(CMOS)具有高度相容性,因此能夠大幅降低製程成本,同時也希望能藉由成熟的CMOS 製程技術來整合且積體化所有具不同功能的元件。集成布拉格光柵結構在SOI上已有十足的發展,而提供靈活與精確的光譜響應一直是研究的目標之一。本實驗室提出一披覆層調變的波導設計與弱耦合光柵在SOI平台上來實現集成布拉格光柵並兼容CMOS製程,此方式不但可以達到窄反射帶寬(0.217 nm),且光柵寬度改變對布拉格波長影響不大,而本論文利用實驗室已提出的披覆層調變光柵波導設計做延伸與應用,包括(1)藉由披覆層調變主波導寬度的變化,在同個波導上能同時擁有四個布拉格波長反射,作為低密度分波多工系統,間隔20 nm,(2)藉由披覆層調變波導設計能同時在主波導與側波導上同時設計不同的光柵週期,因此能同時擁有多個布拉格反射頻譜,(3)利用光柵錯位方式之設計,更精準且靈活地去控制光柵耦合強度,進而調整反射帶寬,(4)藉由加入取樣光柵在長直型的披覆層調變波導或環形共振腔上,能擁有週期性的分波多工反射頻譜,藉由改變取樣光柵週期能控制自由頻譜範圍(FSR)。
最後,利用披覆層調變布拉格光柵在SOI平台上實現矽光子溫度感測器,在光柵寬度為30 nm情況下,有著窄的反射帶寬(0.63nm)及高的消光比(21 dB),同時有著大的溫度工作範圍,而當光柵寬度改變時,有著相對穩定的反射帶寬(Δλ/ΔWg = 0.013)、布拉格波長(λB/ΔWg = 0.002)、溫度靈敏度(δλ/δT = 83.4 pm/οC)
,FOM值來到0.132/oC,與條形波導及板狀波導相比之下都有較好的元件表現。
Abstract
This thesis aims to achieve functional grating devices on silicon-on-insulator (SOI) platform using the cladding-modulated (CladMod) waveguide configuration. Such a CMOS-compatible CladMod grating is able to provide narrowband reflection and stable Bragg wavelength from a high-index-contrast SOI platform. The proposed CladMod grating serves as a building block in this work to realize various functional photonic devices on SOI, including (1) coarse wavelength-division-multiplexing 20-nm-spaced four-channel gratings by adjusting the core waveguide width for effective index engineering, (2) multi-channel grating reflectors by introducing width corrugations on the sidewalls of CladMod core and cladding waveguides, (3) bandwidth-tunable gratings by varying the misalignment between sidewall gratings to tune the grating coupling strength, and (4) multi-channel grating reflectors by applying sampled gratings on either a straight CladMod waveguide or a micro-ring resonator for different free-spectral-range needs. We also investigate the effects of asymmetric distance between core and cladding waveguides in CladMod gratings.
A silicon photonics temperature sensor based on CladMod gratings on SOI substrate is finally demonstrated. This sensor enables a narrowband reflection (0.63 nm for 30 nm grating width), a linear wavelength-to-temperature response over a wide temperature range with an extinction ratio of 21 dB, a stable reflection bandwidth (Δλ/ΔWg = 0.013), Bragg wavelength (λB/ΔWg = 0.002), and temperature sensitivity (δλ/δT/ΔWg = -1.3×10-5 K-1 with a δλ/δT = 83.4 pm/oC) against the grating width variation, and a FOM score of 0.132/oC. Such a superior temperature sensing properties in CladMod gratings outperform the strip- and slab-type grating counterparts.
目次 Table of Contents
目錄
第一章 緒論 1
1.1 矽光子技術 2
1.2 研究動機 4
1.3 論文大綱 9
第二章 基礎理論 10
2.1 矽光學布拉格光柵簡介 10
2-2 模擬分析介紹 13
2-2.1 薄膜模態匹配法(Film Mode Method) 13
2-2.2 特徵模態展開法(EME) 14
2-3 波導介紹 18
2-3.1 條型波導 18
2-3.2 板型波導 20
2-3.3 披覆層調變波導 22
第三章 披覆層調變波導之設計量測 26
3-1 量測系統 26
3-2 下線晶片 28
3-3 披覆層調變波導設計與量測結果 29
3-3.1 波導損耗 29
3-3.2 四波長披覆層調變波導 33
3-3.3 光柵錯位(offset)方式波導 38
3-3.4 雙週期與三週期披覆層調變波導 44
3-3.5 披覆層調變取樣光柵波導 49
3-3.6 披覆層調變環形取樣光柵 52
第四章 積體化矽光子溫度感測器 56
4-1 矽光子溫度感測器之介紹 56
4-2 溫度感測器之模擬比較 58
4-3 條型波導於溫度感測器之量測 59
4-4 板型波導於溫度感測器之量測 62
4-5 披覆層調變波導於溫度感測器之量測 65
4-6 微環形共振腔於溫度感測器之量測 68
第五章 結論與未來工作 73
5-1 結論 73
5-2 未來工作 74
參考文獻 83
參考文獻 References
參考文獻
[1] http://mic.iii.org.tw/aisp/reports/reportdetail_register.asp?docid=3035&rtype=freereport.
[2] http://www.itbriefcase.net/google-facebook-and-apple-lead-on-green-data-centers.
[3] Michal Lipson, “Guiding, Modulating, and Emitting Light on Silicon-Challenges and Opportunities,” Journal of Lightwave Technology, vol. 23, no. 9, pp. 4222-4238, 2005.
[4] Bahram Jalali, and Sasan Fathpour, “Silicon Photonics,” Journal of Lightwave Technology., vol. 24, no. 12, pp. 4600-4615, 2006.
[5] R. Soref, “The Past, Present, and Future of Silicon Photonics,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1678-1687, 2006.
[6] Wim Bogaerts, Roel Baets, Pieter Dumon, Vincent Wiaux, Stephan Beckx, Dirk Taillaert, Bert Luyssaert, Joris Van Campenhout, Peter Bienstman, and Dries Van Thourhout, “Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology,” Journal of Lightwave Technology, vol. 23, no. 1, pp. 401-412 ,2005.
[7] L. Vivien and L. Pavesi., “Handbook of Silicon Photonics,” CRC Press, 2013.
[8] https://www.sec.gov/Archives/edgar/data/937966/000115697308000936/u56855exv99w6.htm.
[9] www.osa.org/en-us/the_optical_society_blog/.
[10] Xu. Wang, “ Silicon Photonic Waveguide Bragg Gratings, ” UBC doctor thesis, 2013.
[11] Xu. Wang, Wei Shi, Raha Vafaei, Nicolas A.F. Jaeger, Lukas Chrostowski, “ Uniform and Sampled Bragg Gratings in SOI Strip Waveguides With Sidewall Corrugations,” IEEE Phtonics Technology Letters, vol. 23, no. 5, pp. 290-292, 2011.
[12] Xu Wang, Wei Shi, Han Yun, Samantha Grist, Nicolas A. F. Jaeger, and Lukas Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process, ” Optics Express, vol. 20, No. 14, pp. 15547-15558, 2012.
[13] K. H. Lin, “Cladding-modulated Bragg Grating Reflectors on Silicon-on-insulator Platform,” NSYSU master thesis, 2014.
[14] D. T. H. Tan, K. Ikeda, and Y. Fainman, “Cladding-modulated Bragg gratings in silicon waveguides,” Optics Letters, vol. 34, no. 9, pp. 1357-1359, 2009.
[15] http://www.fs.com/oadm-optical-add-drop-multiplexer-tutorial-aid-451.html
[16] W. Shi, X. Wang, H. Yun, W. Zhang, L. Chrowtowski, and N. Jaeger, “Add-Drop Filters in Silicon Grating-Assisted Asymmetric Couplers,” OSA Technical Digest, paper OTh3D.3, 2012.
[17] L. Chrostowski,K. Iniewski, et al., “ High-Speed Photonics Interconnects,” CRC Press, 2013.
[18] A.S. Sudbo, “Film mode matching: a versatile numerical method for vector mode field calculations in dielectric waveguides,” Pure and Applied optics, vol.2, pp. 211-233, 1993.
[19] Fimmwave/Fimmprop/Omnisim, Photon Design Ltd, http://www.photond.com.
[20] A. D. Simard, N. Ayotte, Y. Painchaud, S. Bedard, and S. LaRochelle, “ Impact of Sidewall Roughness on Integrated Bragg Gratings,” Journal of Lightwave Technology., vol. 29, no. 24, pp. 3693-3704, 2011.
[21] T. E. Murphy, J. T. Hastings, and H. I. Smith, “Fabrication and characterization of narrow-band Bragg-reflection filters in silicon-on-insulator ridge waveguides,” Journal of Lightwave Technology, vol. 19, pp. 1938-1942, 2001.
[22] C. W. Tsai, “SOI micro-ring resonator measurements and analysis,” NSYUS master thesis, 2013.
[23] Frederik Van Laere, Tom Claes, Jonathan Schrauwen, Stijn Scheerlinck, Wim Bogaerts, Dirk Taillaert, Liam O’Faolain, Dries Van Thourhout, and Roel Baets, “Compact focusing grating couplers for Silicon-on-Insulator integrated circuits,” IEEE Photon. Technol. Lett, vol. 19, no. 23, pp. 1919-1921, 2007.
[24] W. Xu, Wei Shi, Raha Vafaei, Nicolas A. F. Jaeger, and Lukas Chrostowski, “Silicon-on-insulator Bragg gratings fabricated by deep UV lithography,” in Asia Communications and Photonics Conference and Exhibition (ACP), pp.501-502, 2010.
[25] Yurii A. Vlasov and Sharee J. McNab, “Losses in single-mode silicon-on-insulator strip waveguides and bends,” Opt. Express, vol. 12, no. 8, pp. 1622-1631, 2004.
[26] A. D. Simard, N. Belhadj, Y. Painchaud, and S. LaRochelle, “Apodized Silicon-on-Insulator Bragg Gratings,” IEEE Photonics Technology Letters, vol. 24, no. 12, pp. 1033-1035, 2012.
[27] D. Wiesmann, C. David, R. Germann, D. Erni, and G. L. Bona, “Apodized surface-corrugated gratings with varying duty cycles, ” IEEE Photon. Technol. Lett, vol. 12, no. 6, pp. 639–641, 2000.
[28] J. H. Schmid, M. Ibrahim, P. Cheben, J. Lapointe, S. Janz, P. J. Bock, A. Densmore, B. Lamontagne, R. Ma, W. N. Ye, and D. X. Xu, “Temperature-independent silicon subwavelength grating waveguides,” Opt. Lett, vol. 36, no. 11, pp. 2110-2112, 2011.
[29] Marc Ibrahim, Jens H. Schmid, Alireza Aleali, Pavel Cheben, Jean Lapointe, Siegfried Janz, Przemek J. Bock, Adam Densmore, Boris Lamontagne, Rubin Ma, Dan-Xia Xu, and Winnie N. Ye, “Athermal silicon waveguides with bridged subwavelength gratings for TE and TM polarizations,” Opt. Express, vol 20, pp. 18356-18361, 2012.
[30] Jong-Moo Lee, Duk-Jun Kim, Gwan-Ha Kim, O-Kyun Kwon, Kap-Joong Kim, and Gyungock Kim, “Controlling temperature dependence of silicon waveguide using slot structure,” Opt. Express, vol 16, pp. 1645-1652, 2008.
[31] A. Khanna, “Silicon Photonics IPIPP25G Technology Handbook,” IMEC, 2015.
[32] Shabnam Homampour, Michael P. Bulk, Paul E. Jessop, and Andrew P. Knights, “Thermal tuning of planar Bragg gratings in silicon-on-insulator rib waveguides,” Phys. Status Solidi C6, no. S1, S240–S243, 2009.
[33] Xu. Wang, Yun Wang, Jonas Flueckiger, Richard Bojko, Amy Liu, Adam Reid, James Pond, Nicolas A. F. Jaeger, and Lukas Chrostowski, “Precise control of the coupling coefficient through destructive interference in silicon waveguide Bragg gratings,” Optics Letters, vol. 39, no. 19, pp. 5519-5522, 2014
[34] V. Jayaraman, Z.-M. Chuang, and L. A. Coldren, “Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings,” IEEE J. Quantum Electron, vol. 29, no. 6, pp. 1824–1834, 1993.
[35] A.S. Jugessur, J. Dou, J.S. Aitchison, R. M. De La Rue, M. Gnan, “A photonic nano-Bragg grating device integrated with microfluidic channels for bio-sensing applications,” Microelectron. Eng, vol. 86, no. 4-6, pp. 1488–1490, 2009.
[36] M. Ibsen, M. K. Durkin, M. J. Cole, and R. I. Laming, “Sinc-sampled fiber Bragg gratings for identical multiple wavelength operation,” IEEE Photonics Technology Letters, vol. 10, no. 6, pp. 842-844, 1998.
[37] Y. M. Kand, Amir Arbabi, and Lynford L. Goddard, “A microring resonator with an integrated Bragg grating : a compact replacement for a sampled grating distributed Bragg reflector,” Opt Quant Electron, pp. 689–697, 2009.
[38] George T. Paloczi, Jacob Scheuer, and Amnon Yariv, “Compact microring-based wavelength-selective inline optical reflector,” IEEE Photon. Tech. Lett, vol. 17, pp. 390–392, 2005.
[39] Young Mo Kang, and Lynford L. Goddard, “Semi-analytical modeling of microring resonators with distributed Bragg reflectors,” Numerical Simulation of Optoelectronic Devices, NUSOD’ 09. International Conference, pp. 123–124, 2009.
[40] Y. Fainman, M. P. Nezhad, D. T. H. Tan, K. Ikeda, O. Bondarenko, and A. Grieco, “Silicon nanophotonic devices for chip-scale optical communication applications,” Appl. Opt, vol. 52, pp. 613-624, 2013.
[41] S. J. Mihailov, “Fiber Bragg Grating Sensors for Harsh Environments,” Sensors, vol. 12, pp. 1898-1918, 2012.
[42] Haitan Xu, Mohammad Hafezi, J. Fan, J. M. Taylor, G. F. Strouse, and Zeeshan Ahmed, “Ultra-sensitive chip-based photonic temperature sensor using ring resonator structures,” Opt. Express, vol. 22, pp. 3098-3104, 2014.
[43] ikolai N. Klimov, Sunil Mittal, Michaela Berger, and Zeeshan Ahmed, “On-chip silicon waveguide Bragg grating photonic temperature sensor,” Opt. Lett, vol. 40, pp. 3934-3936, 2015.
[44] Mariacristina Rumi, and Joseph W. Perry, “Two-photon absorption: an overview of measurements and principles,” Adv. Opt. Photon, vol. 2, pp. 451-518 (2010).
[45] Vilson R. Almedia, and Michal Lipson, “Optical bistability on a silicon chip,” Opt. Lett, vol. 29, no. 20, pp. 3934-3936, 2004
[46] G. Priem, P. Dumon, W. Bogaerts, D. Van Thourhout, G. Morther, and R. Baets, “Optical bistability and pulsating behavior in Silicon-On-Insulator ring resonator structures, ” Opt. Express, vol. 13, no. 23, pp. 3098-3104, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code