Responsive image
博碩士論文 etd-0712117-120945 詳細資訊
Title page for etd-0712117-120945
論文名稱
Title
利用錯位熔接空芯光纖製作法布立-培若光纖干涉儀感測器
HCF-based Fabry-Pérot Interferometer Formed by Misaligned Splicing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-13
繳交日期
Date of Submission
2017-08-12
關鍵字
Keywords
光纖感測器、錯位熔接、開放式共振腔、Fabry-Pérot光纖干涉儀
fiber sensor, misaligned splicing, open-cavity, Fiber-optic Fabry-Pérot interferometer
統計
Statistics
本論文已被瀏覽 5686 次,被下載 19
The thesis/dissertation has been browsed 5686 times, has been downloaded 19 times.
中文摘要
Fabry-Pérot光纖干涉儀具有體積微小、結構簡單和靈敏度高等優點,因此近年來被廣泛應用於各種不同領域。然而,過去研究在製作Fabry-Pérot光纖干涉儀的製程中,往往牽涉到化學蝕刻或利用高功率雷射進行加工,使得製作過程既繁瑣又昂貴。本論文選用製作過程相當簡單、重複性高且成本低廉的錯位熔接法來製作開放式共振腔的Fabry-Pérot光纖干涉儀。我們將空芯光纖熔接於兩單模光纖之間形成共振腔,並透過單熔接面的錯位處理產生孔洞,使其共振腔變為開放式結構,能夠讓外界待測物進入共振腔中進行感測。
我們利用此開放式共振腔Fabry-Pérot光纖干涉儀對環境折射率、溫度以及振動頻率進行感測。對於共振腔長度30μm的元件,在折射率1.333~1.3403之間,元件的折射率靈敏度達到1058.62nm/RIU,且對於折射率量測之最大誤差量僅 4.72x10-5RIU,顯示此元件在折射率感測應用上具有高靈敏度及高穩定性。而在溫度量測範圍30°C~50°C之間,元件的溫度靈敏度僅16.8pm/°C ,說明此元件在進行其他環境參數感測時,不容易受到環境溫度改變的影響。而在振動頻率範圍300Hz~4000Hz之間,此元件的訊雜比約在45~54dB,相較於其他光纖振動感測器具有更好的表現。綜合上述觀點,我們所製作的開放式共振腔Fabry-Pérot光纖干涉儀對於環境折射率及振動頻率的感測具有高度的應用潛能。
Abstract
Fiber-optic Fabry-Pérot interferometers (FFPIs) have been widely explored in many fields due to their advantages such as small size, simple structure and high sensitivity. In previous studies, most FFPIs are fabricated by using etching process or femtosecond lasers, which are complicated and expensive. In this thesis, we fabricate an open-cavity FFPI by splicing fibers with lateral offset, which is very simple, repeatable and inexpensive. We can make a cavity by fusing a hollow-core fiber (HCF) between two single-mode fibers (SMFs). In order to create an open cavity, we apply misaligned splicing on single fusing point. The sensing materials can then successfully get into the cavity to realize the refractive index (RI) sensing.
We use the FFPI for sensing applications of RI, temperature and vibration. The RI sensitivity of the fabricated FFPI with the cavity length of 30μm is 1058.62nm/RIU as the RI is between 1.333 to 1.3403. The maximum deviation is only 4.72x10-5 RIU, which shows the high sensitivity and great stability of our FFPI. The temperature sensitivity of the FFPI is only between 30°C~50°C, which illustrates the FFPI can be used without temperature disturbance. In the vibration frequency range of 300Hz~4000Hz, our FFPI exhibits large SNR of 45~54dB. As a result, our fabricated open-cavity FFPI sensor has high potential for RI and vibration sensing.
目次 Table of Contents
誌謝 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 續論 1
1-1 光纖的發展簡介 1
1-2光纖干涉儀感測器 4
1-2.1法布立-培若光纖干涉儀(Fabry-Pérot fiber interferometer) 5
1-2.2馬赫-任德爾光纖干涉儀(Mach-Zehnder fiber interferometer) 8
1-2.3麥克森光纖干涉儀(Michelson fiber interferometer) 11
1-3 研究動機 13
第二章 Fabry-Pérot光纖干涉儀 14
2-1 Fabry-Pérot干涉儀的原理 14
2-2 Fabry-Pérot光纖干涉儀 22
第三章 開放式共振腔Fabry-Pérot光纖干涉儀的製作 25
3-1 文獻回顧 25
3-2 元件設計 27
3-3 元件製作 28
3-3.1光纖介紹 28
3-3.2元件製作 29
第四章 開放式共振腔Fabry-Pérot光纖干涉儀基本特性 35
4-1 實驗架設 35
4-2不同元件長度之干涉頻譜 38
4-3元件長度與FSR關係 41
4-4元件錯位量對開放式共振腔形成之影響 43
第五章 開放式共振腔Fabry-Pérot光纖干涉儀之感測應用 45
5-1 折射率感測 45
5-1.1量測架設 45
5-1.2折射率量測 46
5-1.3穩定度 51
5-2溫度感測 52
5-2.1量測架設 52
5-3 振動感測 57
5-3.1低頻量測架設 57
5-3.2低頻量測 58
5-3.3高頻量測 60
第六章 結論 64
參考文獻 65
參考文獻 References
[1] J. Hecht, “A short history of laser development,” Appl. Opt., vol. 49, pp. 091002-1-091002-23, 2010.
[2] K. C. Kao and G. A. Hockham, “Dielectric-fibre surface waveguides for optical frequencies,” Proceedings of the Institution of Electrical Engineers-London, vol. 113, pp. 1151-1158, 1966.
[3] D. J. Sterling and L. Chartrand, Technician’s Guide to Fiber Optics. 1st ed, Cengage Learning Publisher, 2004.
[4] D. Gloge, “Weakly guiding fibers,” Appl. Opt., vol. 10, pp. 2252-2258, 1971.
[5] L. Jiang, J. Yang, S. Wang, B. Li, and M. Wang, “Fiber Mach-Zehnder interferometer based on microcavities for high-temperature sensing with high sensitivity,” Opt. Lett., vol. 36, pp. 3753-3755, 2011.
[6] J. Wo, G. Wang, Y. Cui, Q. Sun, R. Liang, P. Shum, and D. Liu, “Refractive index sensor using microfiber-based Mach-Zehnder interferometer,” Opt. Lett., vol. 37, pp. 67-69, 2012.
[7] S. Zhang, W. Zhang, S. Gao, P. Geng, and X. Xue, “Fiber-optic bending vector sensor based on Mach-Zehnder interferometer exploiting lateral-offset and up-taper,” Opt. Lett., vol. 37, pp. 4480-4482, 2012.
[8] L. A. Fernandes, J. R. Grenier, J. S. Aitchison, and P. R. Herman, “Fiber optic stress-independent helical torsion sensor,” Opt. Lett., vol. 40, pp. 657-660, 2012.
[9] J. Zhou, Y. Wang, C. Liao, G. Yin, X Xu, K. Yang, X. Zhong, Q. Wang, and Z. Li, “Intensity-modulated strain sensor based on fiber in-line Mach-Zehnder interferometer,” IEEE Photon. Technol. Lett., vol. 26, pp. 508-511, 2014.
[10] S. Zhang, X. Dong, T. Li, C. Chan, and P. P. Shum, “Simultaneous measurement of relative humidity and temperature with PCF-MZI cascaded by fiber Bragg grating,” Opt. Commun., vol. 303, pp. 42-45, 2013.
[11] Y. Xu, P. Lu, Z Qin, J. Harris, F. Baset, P. Lu, V. R. Bhardwaj, and X. Bao, “Vibration sensing using a tapered bend-insensitive fiber based Mach-Zehnder interferometer,” Opt. Express, vol. 21, pp. 3031-3042, 2013.
[12] P. Zu, C. Chan, W. Lew, L. Hu, Y. Jin, H. Liew, L. Chen, W. Wong, and X. Dong, “Temperature-insensitive magnetic field sensor based on nanoparticle magnetic fluid and photonic crystal fiber,” IEEE Photon. J., vol. 4, pp. 491-498, 2012.
[13] G. Wild and S. Hinckley, “Acousto-ultrasonic optical fiber sensors: Overview and state-of-the-art,” IEEE Sens. J., vol. 8, pp. 1184-1193, 2008.
[14] A. Cipullo, G. Gruca, K. Heeck, F. Filippis, D. Iannuzzi, A. Minardo, and L. Zeni, “Numerical study of a ferrule-top cantilever optical fiber sensor for wind-tunnel applications and comparison with experimental results,” Sens. and Actuators A Phys., vol. 178, pp. 17-25, 2012.
[15] S. K. Mishra, B. Zou, and K. S. Chiang, “Wide-range pH sensor based on a smart-hydrogel-coated long-period fiber grating,” IEEE Photon. Technol. Lett., vol. 23, pp. 5601405-1-5601405-5, 2017.
[16] X. Wang, D. Chen, H. Li, G. Feng, and J. Yang, “In-line Mach-Zehnder interferometric sensor based on a seven-core optical fiber,” IEEE Sens. J., vol. 17, pp. 100-104, 2017.
[17] Y. Zhao, M. Chen, R. Lv, and F. Xia, “In-fiber rectangular air Fabry-Pérot strain sensor based on high-precision fiber cutting platform,” Opt. Commun., vol. 384, pp. 107-110, 2017.
[18] F. Ahmed, V. Ahsani, L. Melo, P. Wild, and M. B. G. Jun, “Miniaturized tapered photonic crystal fiber Mach-Zehnder interferometer for enhanced refractive index sensing,” IEEE Sens. J., vol. 16, pp. 8761-8766, 2016.
[19] H. Cao and X. Shu, “Miniature all-fiber high temperature sensor based on michelson interferometer formed with a novel core-mismatching fiber joint,” IEEE Sens. J., vol. 17, pp. 3341-3345, 2017.
[20] Z. Y. Huang, Y. Z. Zhu, X. P. Chen, and A. B. Wang, “Intrinsic Fabry-Pérot fiber sensor for temperature and strain measurements,” IEEE Photon. Technol. Lett., vol. 17, pp. 2403-2405, 2005.
[21] Y. J. Rao, T. Zhu, X. C. Yang, and D. W. Duan, “In-line fiber-optic etalon formed by hollow-core photonic crystal fiber,” Opt. Lett., vol. 32, pp. 2662-2664, 2007.
[22] R. Wang, P. Huang, J. He, and X. Qiao, “Gas refractometer based on a side-open fiber optic Fabry-Pérot interferometer,” Appl. Opt., vol. 56, pp. 50-54, 2017.
[23] T. Wei, Y. Han, Y. Li, H. Tsai, and H. Xiao, “Temperature-insensitive miniaturized fiber inline Fabry-Pérot interferometer for highly sensitive refractive index measurement,” Opt. Express, vol. 16, pp. 5764-5769, 2008.
[24] D. Duan, Y. Rao, and T. Zhu, “High sensitivity gas refractometer based on all-fiber open-cavity Fabry-Pérot interferometer formed by large lateral offset splicing,” J. Opt. Soc. Am. B., vol. 29, pp. 912-915 2012.
[25] Y. Zhao, X. Li a, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. and Actuators B Chem., vol. 221, pp. 406-410, 2015.
[26] X. Dong, X. Sun, D. Chu, K. Yin, Z. Luo, C. Zhou, C. Wang, Y. Hu, and J. Duan, “Microcavity Mach-Zehnder interferometer sensors for refractive index sensing,” IEEE Photon. Technol. Lett., vol. 28, pp. 2285-2288, 2016.
[27] J. Yin, T. Liu, J. Jiang, K. Liu, S. Wang, S. Zou, and F. Wu, “Assembly-free-based fiber-optic micro-Michelson interferometer for high temperature sensing,” IEEE Photon. Technol. Lett., vol. 28, pp. 625-628, 2016.
[28] F. A. Jenkins, and H. E. White, Fundamentals of Optics. 1st ed, McGraw Hill, 1957.
[29] G. Hernandez, Fabry-Pérot Interferometers. 1st ed, Cambridge: Cambridge University Press, 1986.
[30] A. Yariv and P. Yeh, Photonics: Optical Electronics in Modern Communications, 6th ed, New York: Oxford University Press, 2007.
[31] M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. V. Stryland, Handb. Opt., 3rd ed. McGraw Hill, 2009.
[32] E. Hecht, Optics, 4th ed. New York: Addison-Wesley, 2001.
[33] Y. Zhao, R. Lv, D. Wang, and Q. Wang, “Fiber optic Fabry-Pérot magnetic field sensor with temperature compensation using a fiber Bragg grating,” IEEE Photon. Technol. Lett., vol. 63, pp. 2210-2214, 2014.
[34] S. Silva, L. Coelho, and O. Frazao, “An all-fiber Fabry-Pérot interferometer for pressure sensing in different gaseous environments,” Measurement, vol. 47, pp. 418-421, 2014.
[35] W. M. B. Yunus and A. B. Rahman, “Refractive index of solutions at high concentrations,” Appl. Opt., vol. 27, pp. 3341-3343, 1988.
[36] Z. Feng , J. Li, X. Qiao, L. Li, H. Yang, and M. Hu, “A thermally annealed Mach-Zehnder interferometer for high temperature measurement,” Sensors, vol. 14, pp. 14210-14221, 2014.
[37] F. Wang, J. Xie, Z. Hu, S. Xiong, H. Luo, and Y. Hu, “Interrogation of extrinsic Fabry-Pérot sensors using path-matched differential interferometry and phase generated carrier technique,” J. Lightw. Technol., vol. 33, pp. 2392-2397, 2015.
[38] F. Wang, Z. Shao, J. Xie, Z. Hu, H. Luo, and Y. Hu, “Extrinsic Fabry-Pérot underwater acoustic sensor based on micromachined center-embossed diaphragm,” J. Lightw. Technol., vol. 32, pp. 4026-4034, 2014.
[39] B. Liu, J. Lin, J. Wang, C. Ye, and P. Jin, “MEMs-based high-sensitivity Fabry-Pérot acoustic sensor with a 45 angled fiber,” IEEE Photon. Technol. Lett., vol. 28, pp. 581-584, 2016.
[40] C. Lee, Y. Tsai, G. Chen, Y. Xiao, J. Hsu, and J. Horng, “Refined bridging of microfiber plugs in hollow core fiber for sensing acoustic vibrations,” IEEE Photon. Technol. Lett., vol. 27, pp. 2403-2406, 2015.
[41] J. Kang, X. Dong, Y. Zhu, S. Jin, and S. Zhuang, “A fiber strain and vibration sensor based on high birefringence polarization maintaining fibers,” Opt. commun., vol. 322, pp. 105-108, 2014.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code