Responsive image
博碩士論文 etd-0713101-142244 詳細資訊
Title page for etd-0713101-142244
論文名稱
Title
沼氣脫硫:實場生物洗滌塔操作性能研究
Biogas desulfurization: Performane study of a full-scale scrubber for biogas desulfurization
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2001-06-06
繳交日期
Date of Submission
2001-07-13
關鍵字
Keywords
吸收塔、脫硫、硫化氫、沼氣、洗滌
desulfurization, absorption, biogas, hydrogen sulfide, scrubbing
統計
Statistics
本論文已被瀏覽 5752 次,被下載 9094
The thesis/dissertation has been browsed 5752 times, has been downloaded 9094 times.
中文摘要
本研究標的為以二串聯之吸收塔(內徑0.6 m,填充4"K6 Heilex-Type或2.5"Crown-Biopacks塑膠填料,堆填高度分別計5 m及3.65 m) ,利用一廢水場之活性污泥沉澱池排出水,以吸收由該廢水廠場UASB(上流式厭氣污泥床)排出沼氣中之硫化氫。吸收硫化氫後之循環水再排入活性污泥槽中,藉其中之微生物將液相中之硫化氫氧化。
於為期 20 週之實場試結果顯示,在液體及氣體空塔流速分別為 13.2-28.1 及 304.0-644.0 m/h,吸收塔可將硫化氫由378- 18,923 ppm去除至1-2,100 ppm,平均去除率>96%,出口硫化氫濃度在 300 ppm以下。結果亦顯示,當循環水pH值由 7.7 提高至 8.8 時,吸收塔之整體去除效率由 86% 提高至 98%。硫化氫經由循環水吸收後,約有 1/3 之總硫以硫酸鹽 ( SO4-2 ) 或硫氧化物 ( S-2 ) 之型態在吸收塔底出流水中被檢出,其餘推測是於水中被氧化後以固體硫磺型態附著於濾料表面,此為吸收塔操作時壓降日增之主因。
經由硫化氫之氣-液平衡公式及硫化氫於吸收塔中之質量平衡計算,可得知循環水 pH 、氣體流量、循環水流量、及濾料填充高度等與硫化氫去除率間的關係﹔經由計算得知,在系統溫度 30oC,循環水pH = 8.0 時,吸收塔最小氣液比為(L/G)min =0.043 m3 /m3﹔循環水 pH = 8.5 時,(L/G)min =0.014 m3 /m3。經將試驗數據代入模式計算知,在單位面積氣體及液體空塔流速分別為GL = 304.0-644.0 m3/m2.h及 GV = 15.1-28.1 m3/m2.h,循環水pH = 7.7-8.6時,硫化氫傳入循環吸收液之總氣相質傳係數 Kya = 1.15×1017×GV0.94×GL -3.03。Kya隨GL增加而降低之原因主要因為GL增大使氣-液接觸表面積a減小而不利於硫化氫的吸收。沼氣進入吸收塔後,其硫化氫濃度隨填料高度及循環水pH值之變化情形,可以由模式計算出。

Abstract
In this study, a set of full-scale two-stage-in-series scrubbing tower was constructed to test its performance for desulfurization of biogas from three anaerobic UASB (upflow anaerobic sludge blanket) reactors of a wastewater plant for treating corn-syrup processing wastewater. Each stage of the absorbing towers was constructed from a 0.6m × 6 m (I.D. × H) plastic column packed with plastic packings (4” K6 Heilex-Type or 2.5” Crown-Biopacks with packing heights of 5 m and 3.65 m, respectively). Effluent from the activated sludge sedimentation tank of the wastewater plant was used as a scrubbing liquid and the tower effluent liquid was discharged into the activated sludge tank for oxidation of the absorbed hydrogen sulfide.
Results of a continuous operation period of 20 weeks indicate that H2S of 380-19,000 ppm in the biogas could be reduced to 1-2,100 ppm by the scrubbing towers with superficial liquid and gas velocities of GL = 13.2-28.1 and GV = 306-642 m/h, respectively. On an average, the effluent gas contained a H2S concentration of less than 300 ppm and the removal efficacy was more than 96%. Results also indicate that as pH of the scrubbing liquid increased from 7.7 to 8.8, the overall H2S removal efficacy raised from 86 to 98%. About 1/3 of the absorbed H2S-S was detected as H2S-S and SO4-2-S in the tower effluent. The rest was supposed to be as elemental sulfur in a slimy form which sticked to the packing surface. This might be the reason for the increasing pressure drop with the operation time.
A set of performance and gas-liquid equilibrium equations were proposed to estimated the influence of liquid pH, gas and liquid flow rates, and packing height on the H2S removal efficacy. Calculation results indicate, at 30oC, the minimum liquid/gas ratios (L/G)min for the absorption are 0.043 and 0.014 m3/m3, respectively, for fresh absorbing liquids with pH = 8.0 and 8.5. Based on the proposed equations and the experimental data, the volumetric mass-transfer coefficient Kya for H2S absorption in the towers could be expressed approximately as Kya =1.15×1017GV1.0GL-3.0 with GV =304-644 and GL = 15.1-28.1 m3/m2.h, and liquid pH 7.7-8.6. It was supposed that too much liquid loading leads to a decrease in the specific area a for mass transfer which results in the Kya decrease.

目次 Table of Contents
謝誌摘要英文摘要目錄表目錄圖目錄第一章 前言 IIIIVVVIIIIX1
1.1 惡臭物質定義及來源 1
1.2 研究方法及目的 2
第二章 文獻回顧 8
2.1 常用之排氣控制技術簡介 8
2.2 硫化氫之控制技術 12
2.2.1 物化處理控制技術 12
2.2.2 生物處理控制技術 16
2.3 吸收塔理論 24
2.3.1 氣體吸收基本原理 24
第三章 實驗模式 28
3.1 吸收原理 28
3.2 質量傳輸理論 3.2.1 雙膜理論 2828
3.3 吸收時伴隨化學反應的影響 34
第四章 實驗設備與方法 37
4.1 實驗設備 37
4.2 實驗材料 40
4.3 實驗方法 42
4.3.1硫化氫去除試驗 42
4.3.2氣相質傳係數Kya之求取 43
4.4 分析方法 43
第五章 結果與討論 45
5.1 操作結果 45
5.2 循環水對去除效率的影響 45
5.2.1 循環水pH值改變與去除效率之關係 45
5.2.2 循環水中硫酸鹽濃度與硫化氫去除率之關係 46
5.2.3 循環水量與去除率之關係 46
5.3 進流氣體濃度與硫化氫去除率之關係 46
5.4 進出口之氣液硫流量變化情形 47
5.5 Kya值之計算 47
5.5.1 實際Kya值 47
5.5.2 Kya與循環水流量及氣體流量之關係 48
第六章 結論與建議 61
6.1 結論 61
6.2 建議 62
參考文獻 63
附錄一 塔內實測硫化氫濃度與模式計算結果比較 66
附錄二 以多元迴歸分析計算Kya與氣-液流量之關係 75
附錄三 實場吸收塔沼氣脫硫原始數據 78

參考文獻 References
1. 行政院環保署,空氣污染防治施行細則, 1999。
2. G. Leonardos, J. Air Poll. Cont. Assoc., 1994.
3. 行政院環保署,固定污染源空氣污染物排放標準,1999。
4. 周寬典譯,“臭氣對家畜禽及管理人的影響”,養豬世家第17期,pp.36-40,1989。
5. Smet, E., Lens P., and van Langenhove, H. ” Treatment of Waste Gases Contaminated with Ordous Sulfur Compounds”, Critical Review in Environmental Science and Technology, 28, pp.89-117, 1998.
6. 行政院勞委會勞工安全衛生研究所「物質安全資料表」,http://192.192.46.66/DATABASE.HTM。
7. 行政院環保署,揮發性有機廢氣生物處理系統建立及評估計劃, 2000
8. 朱小蓉,陳郁文,“工業廢氣特殊處理技術”,化工資訊,第六卷,第二期,二月,pp.66-78,民國81年。
9. Devinny J. S., Deshuesses M. A., Webster T. S., ” Biofiltration for air pollution control”, Lewis Publishers, 1998.
10. 劉國棟,“VOC管制趨勢展望”,工業污染防治,第48期,pp.15-31,民國81年。
11. 賴慶智,“臭味及有機廢氣處理實務(一)、(二)”,環保實務及新技術硫研討會,中華民國環保科技學會,民國86年6月。
12. Weast, R. C., “Handbook of Chemistry and Physics”, CRC Press, Boca Raton, 1976.
13. Laplanche, A., Bonnin, C., and Darmon, D., “Comparative study of ordors removal in a wastewater treatment plant by wet scrubbing and oxidation by chlorine or ozone”, Characterization and Control of Ordoriferous Pollutants in Process Industries, pp.277-294, 1994.
14. Mansfield, L. A., Melnyk, P. B., and Richardson, G. C., “Selection and full-scale use of a chelated iron absorbent for ordor control ”, Water Environmental Research, 64, pp.120-127,1992.
15. van Durme, G. P., McNamara, B.F., and McGinley, C. M., “Bench-scale removal of odor and volatile organic compounds at a composting facility”, Water Environmental Research, 64, pp.19-27, 1992.
16. Murihead, T., LaFond, P., and Dannis, D., “Air handlind and scrubber retrofits optimize odor control”, Biocycle , 3, pp.68-75, 1993.
17. Turk, A., Manhood, K., and Mozaffair, J., “Activated carbon for air purification in New York city’s sewage treatment plants”, Water Science and Technology, 27, pp.121-126, 1993.
18. Diks, R. M. M., “The Removal of Dichloromethane from Waste Gases in a Biological Trickling Filter”, Ph. D Thesis, Technical University of Eindhoven, The Netherlands, 1992.
19. Tichy, R., Grotenhuis J. T. C., Bos P., and Lens, P., “Solid-state reduce sulfur compounds: environmental aspects and bioremediation”, Critical Review in Environmental Science and Technology, 28(1), pp.2545-2552, 1998.
20. Paillard, H., and Blondeau, F., “Les nuisances olfactives en assainissement:causes et remedes”, T. S. M.-L’EAU, 2, pp.79-88, 1988.
21. Laffort, P., “The application of synergy and inhibition phenomena to odor reduction”, Characterization and Control of Odoriferous Pollutants in Process Industries, Amsterdam, Elsevier Science B.V., pp.105-117, 1994.
22. Kirchner, K., Schlachter, U., and Rehm, H. J., “Biological purification of exhaust air using fixed bacterial mouocultures”, Applied Microbiol. Biotechnol, 31, pp.629-632, 1989.
23. Kuter, G. A., Harper, J.E., Naylor, L. M., and Gormsen P.J., “Design, construction and operation of biofilter for controlling odors at composting facilities”, A&W MA, Proc. 86th Annual Meeting&Exhibition, 93-WP-52C.02.
24. Leson, G., and Winer, A. M., “Biofiltration:an intriduction air pollution control technology for VOC emissions”, J. Air Waste Manage. Assoc., 41(8):1045-1054, 1991.
25. Ottengrf, S. P. P., ”Exhaust gas purification”, Rehm H. J.& Reed, G.(eds), Biotechnology, 8, VHC, Weinheim, 1986.
26. Visscher, K., Ber. Munich, Siedlungswasser-wirtsch. 49., Oldenbourg Verlag, 1972.
27. Kirchner, K., and Wanger, S., ”Biological purification of waste gases by means of immobilized bacteria(monocultures)”, Proceedings of the 87th Annual Meeating & Exhibition of Air & Water Management Association, Cininnate, Ohio, June 19-24,1994.
28. 邱創泛、王耀銘、張桓卿,“空氣污染生物處理技術本土化之評估”,工業污染防治第五十八期,PP.111-124,1996
29. Lanting J., and Shah A. S., ” Biological removal of hydrogen sulfide from biogas”, 46th Purdure Industrial Waste Conference Proceedings, pp.709-714, Chelsea, Lewis Publishers, Inc, 1992.
30. Kowal S., Fanlo J. L., Degorce-Dumars J. R., and Le Cloirec P., ” Deodorization with a biofilter using a consumable support:example of BSE process for hydrogen sulfide removal ”, Poll. Atm.34-42, 1992.
31. Bonnin, C., Laborie, A., and Pailliard, H., ” Odor nuisances created by sludge treatment problems and solutions”, Water Science and Technology, 22, pp.65-74, 1990.
32. Brandy, J., Fanlo, J. L., and Le Cloirec, P., ” Deordorization of gaseous emission by a bioscrubber”, Odous VOC’s J., 1, pp.192-197, 1995.
33. 李國鏞編著,“普通微生物學”,pp.327-332,1992。
34. Cork, D. J., Garunas, R., and Sajjad, A., ” Chlorobium limicola forma thiosulfatophilium:biocatalyst in the production of sulfur and organic carbon from a gas stream containing H2S and CO2”, Appl. Environ. Microbio, 45, pp,913-918, 1983.
35. Zhzng, L, Hirai, M., and Shoda, M., ” Removal characteristics of dimethyl sulfide,methanethiol and hydrogen sulfide by hyphomicrobium sp. I55 isolated from peat biofilter”, J. Fermenr. Bioeng, 72, pp,392-396, 1991.
36. Oren A., and Padan E., ” Induction of anaerobic,photoautotrophic growth in the cyanobactrium Oscillatoria limnetica”, J. Bacteriol., 133, pp.558-563, 1978.
37. Cho K.S., Hirai, M., and Shoda, M., ” Degradation of hydrogen sulfide by Xanthomonas sp.strain DY44 isolated from peat”, Appl. Environ. Microbiol., 58, pp.1183-1189, 1992.
38. Yang, Y., and Allen, E. R., ” Biofiltration control of hydrogen sulfide.I. Design and operational parameters”, J. Air Waste Manage. Assoc., 44, pp.863-868, 1994.
39. 陳俊成,黃亮潔,“洗滌塔添加氧化劑應用於去除硫化氫之參數研究”,淡江大學水資源及環境工程學系研究所碩士論文,pp5-9,1998。
40. Pulp, Prahacs S., and Pointe Claire.Que, ” Control of emission from kraft recovery furnaces by wet scrubbing ”, Environmental Progress, 4, pp.94-99, 1985.

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code