Responsive image
博碩士論文 etd-0713104-145557 詳細資訊
Title page for etd-0713104-145557
論文名稱
Title
以低壓有機金屬化學氣相沈積法於藍寶石基板上成長氮化鎵結核層對於氮化鎵磊晶膜品質之影響
Influences of GaN Nucleation Layer on the Quality of GaN/Sapphire by LP-MOCVD
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
99
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-07-09
繳交日期
Date of Submission
2004-07-13
關鍵字
Keywords
氮化鎵、結核層、有機金屬化學氣相沉積法
GaN, nucleation layer, MOCVD
統計
Statistics
本論文已被瀏覽 5671 次,被下載 0
The thesis/dissertation has been browsed 5671 times, has been downloaded 0 times.
中文摘要
以氮化鎵為基底的材料已成功應用於短波長雷射二極體,發光二極體及紫外光光檢測器。在本實驗中,我們以成功使用有機金屬化學氣相沈積法將氮化鎵磊晶膜生長於藍寶石基板上,並且對生長氮化鎵磊晶膜前之氮化鎵非晶結核層之生長溫度、時間以及氮化鎵磊晶膜之生長溫度等參數進行研究。根據77K的光激發光譜、X光散射測量、掃瞄式電子顯微鏡的結果,瞭解氮化鎵的基本特性,並且利用上述方式,生長更好的氮化鎵磊晶膜。在本實驗中,發現非晶結核層在升高溫時會有再結晶現象,此現象在不同條件下的結核層會有不同的結晶程度,成為影響單晶品質與表面平整度的重要參數。根據實驗的結果,我們亦針對黃光區及施體受體對的成因做更深入的研究與探討。
Abstract
The materials based on GaN have successfully developed on short-wavelength laser diodes (LDs), light-emitting diodes (LEDs) and ultraviolet photodetector. In this study, GaN epitaxial layers have been successfully grown on sapphire substrates. We used several methods including the growth temperature and time of amorphous nucleation layer before growing epilayer and the growth temperature of GaN epilayer to study it. From the results of the photoluminescence (PL) measured at 77K, the X-Ray diffraction measurement, SEM cross sectional views to realize the characteristic and we get a better qualities of GaN epilayers after using the foregoing methods. In this study, the re-crystallization of the amorphous nucleation layer would occur while temperature re-rise to high temperature, and the phenomenon have different crystallinity under the different growth conditions of nucleation layer, which influence the quality and morphology of GaN epilayers seriously. According to the results of the experiments, we study the mechanisms of yellows luminescence and donor-acceptor pair.
目次 Table of Contents
CONTENTS.....................................I
LIST OF FIGURES..............................IV
ABSTRACT.....................................VII

1.INTRODUCTION............................................1
1.1 Evilutions and Applications of Group-III Nitrides.....1
1.2 Blue LEDs Materials...................................5
1.3 Crucial Role of GaN Nucleation Layer..................7

2.EXPERIMENTS.............................................8
2.1 MOCVD Growth System...................................8
2.1.1 Flexibility, Simplicity and Versatility.............8
2.1.2 Halide Free.........................................9
2.1.3 Single Hot Zone and Cold Wall System................9
2.1.4 Capability of Multiple Heterostructure.............10
2.1.5 High Temperature and Low Pressure..................10
2.2 Chemical Reactions in MOCVD Process..................11
2.2.1 Advantage of Using TEGa in our System..............12
2.3 Growth System Design.................................13
2.3.1 Equipment Apparatus................................13
2.3.2 Gas Handling System................................13
2.3.3 Reaction Chamber Design............................14
2.3.4 Heating System.....................................15
2.3.5 Exhausted System...................................15
2.3.6 Safety Equipment Considerations....................16
2.4 Substrate Preparation................................17
2.5 Growth Processes.....................................18
2.6 Evaluation of GaN Epilayers..........................19

3. RESULTS AND DISCUSSION................................20
3.1 Photoluminescence Properties of GaN..................20
3.2 Study of GaN Epilayer by Modulating the Growth Temperature of GaN Nucleation Layer......................22
3.2.1 PL Properties......................................24
3.2.2 SEM Analysis.......................................26
3.2.3 X-Ray Measurements.................................27
3.3 Study of GaN Epilayers by Modulating the Growth Time of GaN Nucleation Layer..................................27
3.3.1 PL Properties......................................29
3.3.2 SEM Analysis.......................................30
3.3.3 Raman Spectroscopy and X-ray Diffraction Measurements of Various Nucleation Layer Thicknesses after Recrysallization.........................................33
3.3.4 X-Ray Measurements.................................33
3.4 Study of GaN Epilayers by Modulating the Growth Temperature..............................................34
3.4.1 PL Properties......................................35
3.4.2 SEM Analysis.......................................36
3.4.3 X-Ray Measurements.................................37
3.5 Study of GaN Epilayers by Modulating the Flow Rate of TEGa.....................................................37
3.5.1 PL Properties......................................38
3.5.2 SEM Analysis.......................................38
3.5.3 X-Ray Measurements.................................39
3.5.4 XPS Analysis.......................................40
3.6 Study of GaN Epilayers by Modulating the Flow Rate of NH3......................................................41
3.6.1 PL Properties......................................42
3.6.2 SEM Analysis.......................................42
3.7 Other Analyses in Our Experiment.....................43
3.7.1 X-ray Measurements.................................43
3.7.2 Fourier Transform Infrared (FTIR) Analysis.........44
3.7.2 EDX Analysis.......................................45
3.8 Mechanism of DAP and YL in Our Experiment............45
3.9 Effect on GaN Epilayers with Adding SiN Layer before Nucleation Layer.........................................46
3.9.1 PL Properties......................................47
3.9.2 DCXD Rocking Curves Measurements...................48

4. CONCLUSIONS...........................................50

FIGURES..................................................52
REFERENCE ................................................93
參考文獻 References
[1] S. Nakamura, T. Mukai, and M. Senoh, “Candela-Class High Brightness InGaN/AlGaN Double-Heterostructure Blue Light-Emitting Diodes,” Applied Physics Letters, vol. 64, pp. 1687-1689, 1994
[2] H. Amano, M. Kitoh, K. Hiramatsu, and I. Akasaki, “Gallium Arsenide and Related Compounds,” UKIOP, p. 725, 1990
[3] D. Dingle, K .L. Shaklee, R. F. Leheny and R. B. Zetterstrom, “Room-Temperature Violet Stimulated Emission from Optically Pumped AlGaN/GaInN Double Heterostructure,” Applied Physics Letters, vol. 64, pp. 1377-1379, 1994
[4] J. I. Pankove, E. A. Miller, and J. E. Berkeyheriser, RCA Rev., 32, p. 383, 1971
[5] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-Power Phosphor-Converted Light-Emitting Diodes Based on III-Nitrides,” IEEE Journal on Selected Topics in Quantum Electronics, vol. 8, pp. 339-345, 2002
[6] H. Morkoc, “Nitide Semiconductor and Device,” Berlin: Spinger, 1999
[7] J. E. Potts, T. L. Smith, and H. Cheng, “Electron Beam Pumped Lasing in ZnSe Grown by Molecular Beam Epitaxy,” Applied Physics Letters, vol. 50, pp. 7-9, 1987
[8] J. Ding, H. Jeon, and A. V. Nurmikko, “Laser Action in the Blue-Green from Optically Pumped (Zn,Cd)Se/ZnSe Single Quantum Well Structures,” Applied Physics Letters, vol. 57, pp. 2756-2758, 1990
[9] Ikai. Lo, J. H. Lee, Li-Wei. Tu, and J. K. Tsai, “Thermal Effect on Quantum Confinement in ZnSe0.06Se0.94/Zn0.8Cd0.2Se Quantum Wells” Solid State Communications, vol. 120, pp. 155-160, 2001
[10] S. Nakamura and G. Fasol, “The Blue Laser Diode: GaN Based Light Emitters and Lasers,” Berlin: Spinger , p. 3, 1997
[11] C. J. Sun, J. W. Yang, Q. Chen, and M. Asif Khan, “Deposition of high quality wurtzite GaN films over cubic (111) MgAl2O4 substrates using low pressure metalorganic chemical vapor deposition,” Applied Physics Letters, vol. 68, pp. 1129-1131, 1996
[12] H. G. Grimmeiss, and B. Monemar, “Low-Temperature Luminescence of GaN,” Journal of Applied Physics, vol. 41, pp. 4054-4058, 1970
[13] K. Naniwae, S. Itoh, H. Amano, K. Itoh, and K. Hiramatsu, “Growth of Single-Crystal GaN Substrate Using Hydire Vapor-Phase Epitaxy,” Journal of Crystal Growth, vol. 99, pp. 381-384, 1990
[14] H. Amano, I. Akasaki, and K. Hiramatsu, “Heteroepitaxial Growth and the Effect of Strain on the Luminescent Properties of GaN films on (1120) and (0001) Sapphire Subsyrate,” Japanese Journal of Applied Physics Part 2-Letters, vol. 27, pp. L1384-L1386, 1998
[15] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu and N. Sawaki, “Effects of AlN Buffer Layer on Crystallographic Structure and on Electrical and Optical-Properties of GaN and Ga1-xAlxN Films Grown on Sapphire substrate by MOVPE,” Journal of Crystal Growth, vol. 98, pp. 209-219, 1989
[16] H. Amano, I. Asasaki, N. Sawaki, N. Koide, and K. Hiramatsu, “Effects of the Buffer Layer in Metalorganic Vapor-Phase Epitaxy of GaN on Sapphire Substrate,” Thin Solid Films, vol. 163, pp. 415-420, 1988
[17] H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, “P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron-Beam Irradiation,” Japanese Journal of Applied Physics Part 2-Letters, vol. 28, pp. L2112-L2114, 1989
[18] I. Akasaki, H. Amano, M. Kito, K. Hiramatsu, “Photoluminescence of Mg-Doped P-Type GaN and Electroluminescence of GaN P-N-Junction Led,” Journal of Luminescence, vol. 48-9, pp. 666-670, 1991
[19] S. Nakamura, Y. Harada, and M. Senoh, “Novel Metalorganic Chemical Vapor-Deposition System for GaN Growth,” Applied Physics Letters, vol. 58, pp. 2021-2023, 1991
[20] S. Nakamura, Takashi Mukai, M. Senoh, and N. Iwasa, “Thermal Annealing Effects on P-Type Mg-Doped GaN Films,” Japanese Journal of Applied Physics Part 1-Letters, vol. 31, pp. L139-L142, 1992
[21] M. A. Khan, Q. Chen, R. A. Skogman, and J. N. Kuznia, “Violet-Blue GaN Homojunction Light-Emitting-Diodes with Rapid Thermal Annealing P-Type Layers,” Applied Physics Letters, vol. 66, pp. 2046-2047, 1995
[22] W. Gotz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, “Activation of Acceptors in Mg-Doped GaN Grown by Metalorganic Chemical-Vapor-Deposition,” Applied Physics Letters, vol. 68, pp. 667-669, 1996
[23] S. Nakamura, M. Senoh, and T. Mukai, “High-Power InGaN/GaN Double-Heterostructure Violet Light-Emitting-Diodes,” Applied Physics Letters, vol. 62, pp. 2390-2392, 1993
[24] I. H. Ho, and G. B. Stringfellow, “Solid Phase Immiscibility in GaInN,” Applied Physics Letters, vol. 69, pp. 2701-2703, 1996
[25] S. Nakamura, “GaN Growth Using GaN Buffer Layer,” Japanese Journal of Applied Physics Part 2-Letters, vol. 30, pp. L1705-L1707, 1991
[26] S. Yu. Karpov, V. G. prokofyev, and E. V. Yakovlev, “Novel Approach to Simulation of Group-III Nitrides Growth by MOVPE,” Internet Journal of Nitride Semiconductor Research, vol. 4, pp. 1-7, 1999
[27] N.M Nasser, Z. Ye Zhi, Li Jiawei, and Xu Ya bou, “GaN Heteoepitaxial Growth Techniques,” Journal of Microwaves and Optoelectronics, vol. 2, pp. 22-31, 2001
[28] N. Kobayashi, and T. Makimoto, “Reduced Carbon Contamination in OMVPE Grown GaAs and AlGaAs,” Japanese Journal of Aplied Physics Part 2-Letters, vol. 24, pp. L824-L826, 1985
[29] A. Saxler, D. Walker, P. Kung, X, Zhang, and M. Razeghi, “Comparison of Trimethylgallium and Triethlgallium for growth of GaN,” Applied Physics Letters, vol. 71, pp. 3272-3274, 1997
[30] Hiroshi Ito, and K. Kurishima, “Influence of Gallium Sources on Carbon Incorporation Efficiency into InGaAs Grown by Metalorganic Chemical Vapor Deposition,” Journal of Crystal Growth, vol. 165, pp. 215-221, 1996
[31] S. Keun-Man, K. Dong-Joon, M. Yong-Tae, and P. Seong-Ju, “Characteristics of GaN Grown by Metalorganic Chemical Vapor Deposition Using Trimethylgallium and Triethylgallium,” Journal of Crystal Growth, vol. 223, pp. 439-445, 2001
[32] C. Jenn-Fang, C. Nie-Chuan, H. Wen-Yen, and L. Wei-I, “Analysis of Influence of Alkyl Sources on Deep Levels in GaN by Transient Capacitance Method,” Japanese Journal of Applied Physics Part-2 Letters, vol. 35, pp. L810-L812, 1996
[33] Y. L. Lin, “The Influence of Sapphire Substrate Pre-Baking Treatment on the Quality of GaN Epitaxy by MOCVD,” Nsysu EE Semiconductor Lab, 2001
[34] H. Jeon, V. Kozlov, P. Keller, A. V. Nurmikko, and C. C. Chu, “Room-Temperature Optically Pumped Blue-Green Vertical-Cavity Surface-Emitting Laser,” Applied Physics Letters, vol. 67, pp. 1668-1670, 1995
[35] T. Ogino, and M. Aoki, “Mechanism of Yellow Luminescence in GaN,” Japanese Journal of Applied Physics, vol. 19, pp. 2395-2405, 1980
[36] J. Neugebauer, and C. G. Van de Walle, “Atomic Geometry and Electronic Structure of Native Defects in GaN,” Physical Review B, vol. 50, pp. 8067-8070, 1994
[37] P. Perlin, T. Suski, H. Teisseyre, and M. Leszczynski, “Toward the Indentificational of the Dominant Donor in GaN,” Physics Review Letters, vol. 75, pp. 296-299, 1995
[38] A. E. Wickenden, D. K. Wickenden and T. J. Kistenmacher, “The Effect of Thermal Annealing on GaN Nucleation Layers Deposited on (0001) Sapphire by Metalorganic Chemical Vapor Deposition,” Journal of Applied Physics, vol. 75, pp. 5367-5371, 1994
[39] M. A. Khan, J. M. Vanhove, J. N. Kuznia, and D. T. Olson, “High Electron-Mobility GaN/AlxGa1-xN Heterostructures Grown by Low-Pressure Metalorganic Chemical Vapor Deposition,” Applied Physics Letters, vol. 58, pp. 2408-2410, 1991
[40] S. Fischer, C. Wetzel, E. E. Haller, and B. K. Meyer, “On P-type doping in GaN – acceptor binding energies,” Applied physics Letters, vol. 67, pp. 1298-1300, 1995
[41] H. Teisseyre, T. Suki, P. Perlin, and I. Grzeory, “Different Character of the Donor-Acceptor Pair-Related 3.27 eV Band and Blue Photoluminescence in Mg-Doped GaN. Hydrostatic Pressure Studies,” Physical Review B, vol. 62, pp. 151-157, 2000
[42] T. Suski, P. Perlin, H. Teisseyre, and M. Leszczynski, “Mechanism of yellow luminescence in GaN,” Applied physics Letters, vol. 67, pp. 2188-2190, 1995
[43] G. Neugebauer ,and C. G. Van de Walle, “Gallium Vacancies and the Yellow Luminescence in GaN,” Applied Physics Letters, vol. 69, pp. 503-505, 1996
[44] G. Li, S. J. Chua, S. J. Xu, and W. Wang, “Nature and Elimination of Yellow-Band Lumincesence and Donor-Acceptor Emission of Undoped GaN,” Applied Physics Letters, vol. 74, pp. 2821-2823, 1999
[45] A. E. Yunovich, “Nitrogen Divacancies−the Possible Cause of the ‘Yellow Band’ in the Luminescence Speatra of GaN,” Semiconductors, vol. 32, pp. 1054-1056, 1998
[46] P. Chen, S. Y. Xie, Z. Z. Chen, Y. G. Zhou, and B. Shen, “Deposition and Crystallization of Amorphous GaN Buffer Layers on Si(111) substrates,” Journal of Crystal Growth, vol. 213, pp. 27-32, 2000
[47] Kenji Uchida, Akiyoshi Watanabe, and Fumiko Yano, “Nature of Nitridated Layers Formed on the Sapphire Surface and their Effect on the Growth of GaN,” International Symposium on Blue Laser and Light Emitting Diodes, Chiba Univ., Japan, March 5-7, 1996
[48] E. F. Schubert, I. D. Goepfert, W. Grieshaber, and J. M. Redwing, “Optical Properties of Si-Doped GaN,” Applied Physics Letters, vol. 71, pp. 921-923, 1997
[49] K. Kuriyama, H. Kondo, and M. Okada, “A point Defect Complex Related to the Yellow Luminescence in Electron Irradiated GaN,” Solid State Communications, vol. 119, pp. 559-562, 2001
[50] C. F. Lin, G. C. Chi. M. S. Feng, and J. F. Chi, “The Dependence of the Electrical Characteristics of the GaN Epitaxial Layer on the Thermal Treatment of the GaN Buffer Layer,” Applied Physics Letters, vol. 68, pp. 3758-3760, 1996
[51] X. H. Wu, P. Fini, E. J. Tarsa, B. Heying, and S. Keller, “Dislocation Generation in GaN Heteroepitaxy,” Journal of Crystal Growth, vol. 189/190, pp. 231-243, 1998
[52] K. Uchida, A. Watanbe, F. Yano, and M. Kougchi, “Characterization of Nitridated Layers and their Effect on the Growth and Quality of GaN,” Solis-State Electronics, vol. 41, pp. 135-139, 1997
[53] G. Jyh-Rong, Y. Ming-Fa, and T. Yu-Li, “Deposition of GaN on (111) Si Substrates by Alternate Supply of TMG and NH3,” Optical Materials, vol. 24, pp. 615-619, 2004
[54] I. Takahiro, S. Masatomo, T. Yasushi, and O. Kohji, “Infuence of Thermal Annealing on GaN Buffer Layers and the Property of Subsequent GaN Layers Grown by Metalorganic Chemical Vapor Deposition,” Japanese Journal of Applied Physics, vol. 38, pp. 649-653, 1999
[55] H. C. Lin, J. Ou, W. K. Chen, and W. H. Chen, “Crystalline Structure Changes in GaN Films Grown at Different Temperature,” Japanese Journal of Applied Physics Part-2 Letters, vol. 36, pp. L598-L600, 1997
[56] F. Demangeot, M. A. Renucci, J. Frandon, and O. Briot, “GaN Layer Growth in Relation to Buffer Deposition Temperature,” Materials Science and Engineering B, vol. B43, pp. 246-249, 1997
[57] S. W. King, J. P. Barnak, M. D. Bremser, and K. M. Tracy, “Cleaning of AlN and GaN Surfaces,” Journal of Applied Physics, vol. 84, pp. 5248-5260, 1998
[58] S. Tripathy, S. J. Chua, and A. Ramam, “Electronic and Vironic Properties of n-Type GaN : the Influence of Erching and Annealing,” Journal of Physics: Condensed Matter, vol. 14, pp. 4461-4476, 2002
[59] I. Bertioti, “Characterization of Nitride Coatings by XPS,” Surface and Coatings Techonology, vol. 151-152, pp. 194-203, 2002
[60] G. R. Yang, Y. P. Zhao, Y. Z. Hu, T. P. Chow, and R. J. Gutmann, “XPS and AFM Study of Chemical Mechanical Polishing of Silicon Nitride,” Thin Soild Films, vol. 333, pp. 219-223, 1998
[61] W. H. Sun, K. M. Chen, Z. J. Yang, and J. Li, “Using Fourier Transform Infrared Grazing Incidence Reflectivity to Study Local Vibrational Modes in GaN,” Journal of Applied Physics, vol. 85, pp.6430-6433, 1999
[62] J. Umemura, T. Kamata. T. Kawai, and T. Takenaka, “Quantitative Evaluation of Molecular Orientation in Thin Langmuir-Blodgett Films by FT-IR Transmission and Reflection-Absorption Spectroscopy,” Journal of Physical Chemistry, vol. 94, pp. 62-67, 1990
[63] E. R. Glaser, T. A. Kennedy, K. Doverspike, L. B. Rowland, D. K. Gaskill, and J. A. Freitas, “Optically Deceted Magnetic-Resonance of GaN Films Grown by Organometallic Chemical-Vapor-Deposition,” Physical Review B-Condended Matter, vol. 51, pp. 13326-13336, 1995
[64] R. Niebuhr, K. Bachem, K. Dombrowski, and M. Maier, “Basic Studies of Gallium Nitride Growth on Sapphire by Metalorganic Chemical-Vapor-Deposition and Optical-Properties of Deposited Layers,” Journal of Electronic Materials, vol. 56, pp. 9496-9505, 1997
[65] P. Bobuslawaki, and J. Bernholc, “Doping Properties of C, Si, and Ge impurities in GaN and AlN,” Physical Review B, vol. 56, pp. 9496-9505, 1997
[66] J. Neugebauer and C. G Van, “Gallium Vacancies and the Yellow Luminescence in GaN,” Appiled Physics Letters, vol. 69, pp. 503-505, 1996
[67] T. Mattila, and R. M. Nieminen, “Point-Defect Complexes and Broadband Luminescence in GaN and AlN,” Physical Review B, vol. 55, pp. 9571-9576, 1997
[68] S. Nakamura, M. Senoh, S. Nagahama, and N. Iwasa, “InGaN/GaN/AlGaN-Based Laser Diodes with Modulation-Doped Strained-Layer Superlattices Grown on an Epitaxially Overgrown GaN Substrate,” Applied Physics Letters, vol. 72, pp. 211-213, 1998
[69] S. E. Park, S. M. Lim, C. R. Lee, and C. S. Kim, “Influence of SiN Buffer layer in GaN Epilayers,” Journal of Crystal Growth, vol. 249, pp. 487-491, 2003
[70] T. Kachi, K. Yomita, K. Itoh, and H. Tadano, “A New Buffer Layer for High Quality GaN Growth by Metalorganic Vapor Phase Expitaxy,” Applied Physics Letters, vol. 72, pp. 704-706, 1998
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.135.185.194
論文開放下載的時間是 校外不公開

Your IP address is 3.135.185.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code