Responsive image
博碩士論文 etd-0713104-201235 詳細資訊
Title page for etd-0713104-201235
論文名稱
Title
植入式功能性微電刺激系統
Implantable Functional Electrical Micro-Stimulation System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
64
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2004-06-16
繳交日期
Date of Submission
2004-07-13
關鍵字
Keywords
功能性電刺激、無線傳輸、植入式晶片
Functional Electrical Stimulation, Wireless Transmission, Implantable Chip
統計
Statistics
本論文已被瀏覽 5662 次,被下載 2248
The thesis/dissertation has been browsed 5662 times, has been downloaded 2248 times.
中文摘要
在數十年前,電刺激已被應用在四肢癱瘓或下半身癱瘓病人的復健上,如走路,站立,與周期性的練習上。隨著近年來超大型積體電路的發展,可植入式之微電刺激系統已成為可實現的目標。此篇論文提出一完全植入的系統,其中包括使用線圈互感傳遞功率與資料,通訊協定與封包,與功能性電刺激系統單晶片之實現方式。
此論文的第一部分探討完全植入式功能性電刺激系統之架構,包括無線功率傳輸之理論,類比與數位電路之混合訊號實現方式,RS232通訊協定,與兩種資料編碼 – 曼徹斯特編碼與NRZ編碼。論文的第二部分討論多種頻率刺激之可植入式功能性電刺激系統版本,論述主要集中於適合多種頻率刺激功能之通訊協定,與改良式的晶片訊號連結方式上。
Abstract
For several decades of years, the electrical stimulation has been applied on rehabilitation of motional recovery for quadriplegic and paraplegic patients such as walking, standing, and cycling exercise. As the advancement of VLSI (very large scale integration) technology, the implantable micro-stimulators become feasible in recent years. This thesis presents an implantable system including an inductively coupling transceiver of power & data, a protocol of communication, and the implementation of a FES (Functional Electrical Stimulation ) SOC (System-On-chip).
The first part of this thesis discusses the architecture of the proposed implantable FES system, including the theory of wireless power transmission, the implementation of mixed-signal circuits, the RS232 protocol, and two encoding methods of Manchester code and NRZ code.
The second part of this thesis is focused on the multi-frequency stimulation of the implantable FES system, which comprises an advanced communication protocol suitable for multi-frequency stimulation function and a novel arrangement of interconnections for the chip.
目次 Table of Contents
摘要 i
Abstract ii
第一章 簡介 1
1.1 背景 1
1.2 植入式功能性電刺激系統介紹 2
1.3 完全植入式功能性電刺激系統技術簡介 3
1.4 研究動機 5
1.5 論文大綱 5
第二章 植入式功能性電刺激系統 7
2.1 系統架構與規劃 7
2.2 無線功率傳輸系統 9
2.2.1 簡介 9
2.2.2 線圈感應 10
2.2.3 E類功率放大器 13
2.3 類比與混合訊號電路 17
2.3.1 穩壓器 17
2.3.2 ASK解調器 19
2.3.3 5 MHz 時脈產生器 21
2.3.4 電源起始重置訊號產生器 22
2.3.5 雙向電流式數位類比轉換器 25
2.4 通訊協定 27
2.4.1 曼徹斯特編碼通訊協定 27
2.4.2 RS232簡介 29
2.4.3 NRZ編碼通訊協定與架構 30
2.4.3.1 通訊協定 30
2.4.3.2 數位控制電路 33
2.5 模擬結果 36
2.6 量試結果 42
2.6.1 數位部分量測結果 42
2.6.2 類比部分量測結果 44
2.7 討論 45
第三章 多種頻率電刺激之功能性植入式單晶片 47
3.1 簡介 47
3.2 系統架構 47
3.3 類比與混合訊號電路 49
3.3.1 PAD實現 49
3.3.2 具有溫度補償之時脈產生電路 51
3.4 通訊協定 53
3.5 模擬結果 57
第四章 結論與展望 60
參考文獻 61
參考文獻 References
[1] B.-S. Fu, Design of Bi-directional Wireless Communication for Implantable Biomicrosystem. Ms. D. Thesis, Institute of Biomedical Engineering of National Cheng Kung University in Taiwan, 2003.
[2] S. Bourret, M. Sawan, and R. Plamondon, “Programmable high-amplitude balanced stimulus current–source for implantable microstimulators,” in Proc. IEEE Eng. in Medicine and biology societ, Nov. 1997, vol. 5, pp. 1938-1941.
[3] S. J. Tange, and K. D. Wise, “A 16-channel CMOS neural stimulating array,” IEEE J. of Solid-State Circuits, vol. 27, no. 12, pp. 1819-1825, Dec. 1992.
[4] A. Kawana, and Y. Jimbo, “Neurointerface,” in Proc. Twelfth IEEE International Conference on Micro Electro Mechanical Systems, Jan. 1999, pp. 14-20.
[5] G. Kovacs, C. Storment, M. Halk-Miller, C. Belcznski, E. Lewis, and N. Maluf, “Silicon-substrate microelectrode arrays for parallel recording of neural activity in peripheral and cranical nerves,” IEEE Trans. on Biomedical Engineering, vol. 41, pp. 567-577, 1994.
[6] G. E. Leob, F. J. R. Richmond, W. H. Moore, and R. A. Peck, “Design and fabrication of hermetic microelectronic implants,” in Proc. IEEE-EMBS Special Topic Conference on Microtechnoloies in Medicine & Biology, 2000, pp. 455-459.
[7] G. E. Loeb, F. J. R. Richmond, D. Olney, T. Cameron, A. C. Dupint, K. Hood, R. A. Peck, P. R. Troyk, and H. Schulman, “BION Bionic neurons for functional and therapeutic electrical stimulation,” in Proc. IEEE 20th Int. Cont. Eng. Medicine and Biology Society, 1998, vol. 5, pp. 2305-2309.
[8] B. Razavi, Principles of Data Conversion System Design.
NJ: IEEE press, 1995.
[9] C.-C. Wang, Y.-H. Hsueh, Y.-T. Hsiao, and U-F. Choi, ”Baseband design of a wireless transceiver for implantable neural interface,” in Proc. 2003 Inter. Symp. on Communications (ISCOM’03), Dec. 2003, pp. 69 (CD-ROM version).
[10] Jordi Parramon i Piella, Energy management, wireless and system solutions for highly integrated implantable. la Universitat Autònoma de Barcelona, Spain, Desembre del 2001.
[11] K. Finkenzeller, RFID Handbook. Chichester, England: John Wiley & Sons Ltd., 2003, pp. 61-159.
[12] B. Razavi, Design of Analog CMOS Integrated Circuits. NY: McGRAW-HILL, 2001.


[13] C.-C. Wang, Y.-L. Tseng, T.-J. Lee, and R. Hu, “Low variation 1.0 MHz clock generator with temperature compensation bias,” in Proc. Workshop on Consumer Electronics (WCE), Nov. 2003., pp. 133 (CD-ROM version).
[14] R.R. Tasker, “Deep brain stimulation is preferable to thalamotomy for tremor suppression,” Surg Neurol., vol. 49, no. 2, pp. 145-153, Feb. 1998.
[15] R.G. Dennis, D.E. Dow, and J.A. Faulkner, “An implantable device for stimulation of denervated muscles in rats,” Med. Eng. Phys., vol. 25, no. 3, pp. 239-253, Apr. 2003.
[16] R. J. Baker, H. W. Li, and D. E. Boyce, CMOS circuit design, layout, and simulation. NY: IEEE press, 1998.
[17] K. Arabi, and M. A. Sawan, “Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation,” IEEE Trans. on Rehabilitation Engineering, vol. 7, no. 2, pp. 204-214, Jun. 1997.
[18] B. Ziaie, M. D. Nardin, A. R. Coghlan, and K. Najafi, “A single-channel implantable microstimulator for functional neuromuscular stimulation,” IEEE Trans. on Biomedical Engineering, vol. 44, no. 10, pp. 909-920, Oct. 1997.
[19] J.A. Von Arx, and K. Najafi, “A wireless single-chip telemetry-powered neural stimulation system,” in Proc. IEEE ISSCC 99, Feb. 1999, pp. 214-215.
[20] J. S. Walter, J. S. Wheeler, W. Cai, W. W. King, and R.D. Wurster, “Evaluation of a suture electrode for direct bladder stimulation in a lower motor neuron lesioned animal mode,” IEEE Trans. On Rehabilitation Engineering, vol. 7, no. 2, pp. 159-166, Jun. 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code