Responsive image
博碩士論文 etd-0713105-224056 詳細資訊
Title page for etd-0713105-224056
論文名稱
Title
自發性高血壓大鼠延腦鼻端網狀腹外側核超氧陰離子及過氧化氫參與神經性高血壓之研究
The roles of superoxide anion and hydrogen peroxide in the rostral ventrolateral medulla on neural mechanisms of hypertension in spontaneously hypertensive rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
79
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-06-23
繳交日期
Date of Submission
2005-07-13
關鍵字
Keywords
過氧化氫、延腦鼻端網狀腹外側核、超氧陰離子
superoxide anion, hydrogen peroxide, rostral ventrolateral medulla
統計
Statistics
本論文已被瀏覽 5658 次,被下載 0
The thesis/dissertation has been browsed 5658 times, has been downloaded 0 times.
中文摘要
動脈血壓之調控為一複雜之生理現象,除血管本身變異會造成調節功能失調引起高血壓外,血液中多種分子與化學物質代謝失調,也是造成高血壓之主因。細胞進行有氧呼吸之代謝副產物超氧陰離子 (superoxide anion, O2-)及過氧化氫 (hydrogen peroxide, H2O2),在文獻中已有報導,在高血壓狀況下血管壁中此等物質濃度增高,可能與高血壓形成有關。另一方面延腦鼻端網狀腹外側核 (rostral ventrolateral medulla, RVLM)為中樞神經系統調節血壓恆定相當重要的神經核,它可藉由調控交感神經節前神經元之活性,維持血壓恆定,同時此核也參與反射性血壓調節機制,以維持血壓穩定。延腦鼻端網狀腹外側核神經細胞進行有氧代謝製造之超氧陰離子及過氧化氫,在中樞調控心血管功能之研究近期受到重視,然而此等物質在高血壓狀況下延腦鼻端網狀腹外側核參與心血管調節角色之研究,至今仍待進一步探討。
因此本論文假設,過多的超氧陰離子或過氧化氫可在自發性高血壓大鼠 (spontaneously hypertensive rat, SHR)延腦鼻端網狀腹外側核造成過度氧化傷害 (oxidative stress),導致神經性高血壓的形成。利用成熟雄性自發性高血壓大鼠與正常血壓 (Wistar-Kyoto, WKY)大鼠為實驗材料,首先本研究發現自發性高血壓大鼠延腦鼻端網狀腹外側核區的超氧陰離子含量較WKY大鼠為多,並且過氧化物歧化
Abstract
Maintenance of a stable arterial blood pressure is a complex physiological phenomenon. In addition to dysfunction of the blood vessels, alterations in homeostasis of circulating signals and humoral factors also contribute significantly to the development of hypertension. Recent evidence indicates that accumulation of the byproducts of cellular respiration, including superoxide anion (O2-) and/or hydrogen peroxide (H2O2), are contributing factors in pathophysiology of hypertension. With respect to the central nervous system, neurons in the rostral ventrolateral medulla (RVLM) play a pivotal role in neural regulation of blood pressure. RVLM neurons not only provide a tonic excitation to maintain the sympathetic vasomotor activity of the blood vessels, they also participate in baroreceptor reflex control of blood pressure. The notion that production of O2- and/or H2O2 in the RVLM participates in central control of blood pressure has recently gained major recognition in the area of hypertension study. Nonetheless, detailed insights into the mechanisms underlying O2- and/or H2O2 promoted hypertension remain to be elucidated.
The hypothesis that forms the basis of this study is that enhanced level of O2- and/or H2O2 in the RVLM may be important factors for the manifestation of hypertension in the spontaneously hypertensive rats (SHR), an animal model of human essential hypertension. In comparison to normotensive Wistar-Kyoto (WKY) rats, basal level of O2- in the RVLM region of adult male SHR rats was significantly higher, along with a reduction in the expression of superoxide dismutase 1 (SOD1), SOD2 or catalase. SOD and catalase are enzymes that metabolize cellular O2- or H2O2 respectively.
Pharmacologically, microinjection bilaterally into the RVLM of SOD mimetic, Tempol (50 nmol) or a pan SOD/calatase mimetic, FeTMPyP (100 nmol), significantly decreased mean systemic arterial pressure (MSAP) or heart rate (HR) in both SHR and WKY rats. The maximal hypotensive effect produced by Tempol or FeTMPyP was significantly greater in SHR than WKY rats. We also found that in SHR, but not WKY rats, the hypotensive and bradycardiac responses after microinjection bilaterally into the RVLM of FeTMPyP was significantly greater than that by Tempol. In addition, infection of RVLM neurons with adenoviral vector encoding SOD1 (Ad-SOD1), SOD2 (Ad-SOD2) or catalase (Ad-Catalase) gene (5x108 pfu) into the bilateral RVLM resulted in a long-term hypotensive effect in SHR but not WKY rats. The temporal profile of Ad-catalase-promoted hypotension was again longer than that promoted by Ad-SOD1 or Ad-SOD2 alone. At the molecular level, gene transfer of SOD1, SOD2 or catalase into the RVLM region of SHR or WKY rats specifically increased the expression of individual protein, resulting in a reduction in O2- level. Together these results suggest that accumulation of O2- and/or H2O2 in the RVLM is involved in the neural mechanism of hypertension in SHR.
目次 Table of Contents
頁次
第一章 緒論與文獻回顧 1
第二章 研究動機與目的 11
第三章 實驗材料與方法 14
第四章 實驗結果 23
第五章 討論 30
第六章 結論 42
參考文獻 44
附圖 52
參考文獻 References
Ballinger, C. A., C. Mendis-Handagama, J. R. Kalmar, R. R. Arnold and J. M. Kinkade, Jr. (1994). Changes in the localization of catalase during differentiation of neutrophilic granulocytes. Blood 83(9): 2654-68.

Baylis, C., B. Mitruka and A. Deng (1992). Chronic blockade of nitric oxide synthesis in the rat produces systemic hypertension and glomerular damage. J Clin Invest 90(1): 278-81.

Borders, C. L., Jr. and I. Fridovich (1985). A comparison of the effects of cyanide, hydrogen peroxide, and phenylglyoxal on eucaryotic and procaryotic Cu,Zn superoxide dismutases. Arch Biochem Biophys 241(2): 472-6.

Brown, D. L. and P. G. Guyenet (1984). Cardiovascular neurons of brain stem with projections to spinal cord. Am J Physiol 247(6): R1009-16.

Cai, H. and D. G. Harrison (2000). Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10): 840-4.

Calaresu, F. R. and C. P. Yardley (1988). Medullary basal sympathetic tone. Annu Rev Physiol 50: 511-24.

Chan, S. H., L. L. Wang and J. Y. Chan (2003). Differential engagements and GABA receptors in cardiovascular actions of endogenous nNOS or iNOS at rostral ventrolateral medulla of rats. Br J Pharmacol 138(4):584-93.

Chen, X., R. M. Touyz, J. B. Park and E. L. Schiffrin (2001). Antioxidant effects of vitamins C and E are associated with altered activation of vascular NADPH oxidase and superoxide dismutase in stroke-prone SHR. Hypertension 38: 606-11.

Chan, Y. H., L. L. Wang, K. L. Wu and S. H. Chan (2001). Reduced functional expressiod and molecular synthesis of inducible nitric oxide synthase in rostral ventrolateral medulla of spontaneously hypertensive rats. Circulation104:1676-1681.

Crapo, J. D., T. Oury, C. Rabouille, J. W. Slot and L. Y. Chang (1992). Copper,zinc superoxide dismutase is primarily a cytosolic protein in human cells. Proc Natl Acad Sci U S A 89(21): 10405-9.



Cuzzocrea, S., E. Mazzon, L. Dugo, R. Di Paola, A. P. Caputi and D. Salvemini (2004). Superoxide: a key player in hypertension. FASEB J 18(1): 94-101.

Dampney, R. A., A. K. Goodchild, L. G. Robertson and W. Montgomery (1982). Role of ventrolateral medulla in vasomotor regulation: a correlative anatomical and physiological study. Brain Res 249(2): 223-35.

Dampney, R. A. and E. A. Moon (1980). Role of ventrolateral medulla in vasomotor response to cerebral ischemia. Am J Physiol 239(3): H349-58.

De La Torre, R., A. Casado, E. Lopez-Fernandez, D. Carrascosa, V. Ramirez and J. Saez (1996). Overexpression of copper-zinc superoxide dismutase in trisomy 21. Experientia 52(9): 871-3.

Finkel, T. and N. J. Holbrook (2000). Oxidants, oxidative stress and the biology of ageing. Nature 408(6809): 239-47.

Fridovich, I. and B. Freeman (1986). Antioxidant defenses in the lung. Annu Rev Physiol 48: 693-702.

Fukui, T., N. Ishizaka, S. Rajagopalan, J. B. Laursen, Q. T. Capers, W. R. Taylor, D. G. Harrison, H. de Leon, J. N. Wilcox and K. K. Griendling (1997). p22phox mRNA expression and NADPH oxidase activity are increased in aortas from hypertensive rats. Circ Res 80(1): 45-51.

Granata, A. R., M. Kumada and D. J. Reis (1985). Sympathoinhibition by A1-noradrenergic neurons is mediated by neurons in the C1 area of the rostral medulla. J Auton Nerv Syst 14(4): 387-95.

Granata, A. R., D. A. Ruggiero, D. H. Park, T. H. Joh and D. J. Reis (1983). Lesions of epinephrine neurons in the rostral ventrolateral medulla abolish the vasodepressor components of baroreflex and cardiopulmonary reflex. Hypertension 5: 80-4.

Granger, J. P., A. M. Alberola, F. J. Salazar and T. Nakamura (1992). Control of renal hemodynamics during intrarenal and systemic blockade of nitric oxide synthesis in conscious dogs. J Cardiovasc Pharmacol 20(12): S160-2.



Griendling, K. K., C. A. Minieri, J. D. Ollerenshaw and R. W. Alexander (1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 74(6): 1141-8.

Griendling, K. K., D. Sorescu and M. Ushio-Fukai (2000). NAD(P)H oxidase: role in cardiovascular biology and disease. Circ Res 86(5): 494-501.

Hjalmarsson, K., S. L. Marklund, A. Engstrom and T. Edlund (1987). Isolation and sequence of complementary DNA encoding human extracellular superoxide dismutase. Proc Natl Acad Sci U S A 84(18): 6340-4.

Jones, D. P., L. Eklow, H. Thor and S. Orrenius (1981). Metabolism of hydrogen peroxide in isolated hepatocytes: relative contributions of catalase and glutathione peroxidase in decomposition of endogenously generated H2O2. Arch Biochem Biophys 210(2): 505-16.

Kerr, S., M. J. Brosnan, M. McIntyre, J. L. Reid, A. F. Dominiczak and C. A. Hamilton (1999). Superoxide anion production is increased in a model of genetic hypertension: role of the endothelium. Hypertension 33: 1353-8.

Kimura, Y., Y. Hirooka, Y. Sagara, K. Ito, T. Kishi, H. Shimokawa, A. Takeshita and K. Sunagawa (2005). Overexpression of Inducible nitric oxide synthase in rostral ventrolateral medulla causes hypertension and sympathoexcitation via an increase in oxidative stress. Circ Res 96(2): 252-60.

Kishi, T., Y. Hirooka, K. Sakai, H. Shigematsu, H. Shimokawa and A. Takeshita (2001). Overexpression of eNOS in the RVLM causes hypotension and bradycardia via GABA release. Hypertension 38: 896-901.

Lacerda, J. E., R. R. Campos, G. C. Araujo, S. Andreatta-Van Leyen, O. U. Lopes and P. G. Guertzenstein (2003). Cardiovascular responses to microinjections of GABA or anesthetics into the rostral ventrolateral medulla of conscious and anesthetized rats. Braz J Med Biol Res 36(9): 1269-77.

Laursen, J. B., S. Rajagopalan, Z. Galis, M. Tarpey, B. A. Freeman and D. G. Harrison (1997). Role of superoxide in angiotensin II-induced but not catecholamine-induced hypertension. Circulation 95(3): 588-93.


Makino, A., M. M. Skelton, A. P. Zou and A. W. Cowley, Jr. (2003). Increased renal medullary H2O2 leads to hypertension. Hypertension 42: 25-30.

Marklund, S. L. (1982). Human copper-containing superoxide dismutase of high molecular weight. Proc Natl Acad Sci U S A 79(24): 7634-8.

Marklund, S. L. (1984). Extracellular superoxide dismutase in human tissues and human cell lines. J Clin Invest 74(4): 1398-403.

Marklund, S. L. (1990). Expression of extracellular superoxide dismutase by human cell lines. Biochem J 266(1): 213-9.

Mates, J. M., C. Perez-Gomez and I. Nunez de Castro (1999). Antioxidant enzymes and human diseases. Clin Biochem 32(8): 595-603.

Mavelli, I., A. Rigo, R. Federico, M. R. Ciriolo and G. Rotilio (1982). Superoxide dismutase, glutathione peroxidase and catalase in developing rat brain. Biochem J 204(2): 535-40.

McCord, J. M. and I. Fridovich (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem 244(22): 6049-55.

McIntyre, M., D. F. Bohr and A. F. Dominiczak (1999). Endothelial function in hypertension: the role of superoxide anion. Hypertension 34: 539-45.

Nakazono, K., N. Watanabe, K. Matsuno, J. Sasaki, T. Sato and M. Inoue (1991). Does superoxide underlie the pathogenesis of hypertension? Proc Natl Acad Sci U S A 88(22): 10045-8.

Oury, T. D., L. Y. Chang, S. L. Marklund, B. J. Day and J. D. Crapo (1994). Immunocytochemical localization of extracellular superoxide dismutase in human lung. Lab Invest 70(6): 889-98.

Radi, R., J. F. Turrens, L. Y. Chang, K. M. Bush, J. D. Crapo and B. A. Freeman (1991). Detection of catalase in rat heart mitochondria. J Biol Chem 266(32): 22028-34.




Raha, S. and B. H. Robinson (2000). Mitochondria, oxygen free radicals, disease and ageing. Trends Biochem Sci 25(10): 502-8.

Rathaus, M. and J. Bernheim (2002). Oxygen species in the microvascular environment: regulation of vascular tone and the development of hypertension. Nephrol Dial Transplant 17(2): 216-21.

Roberts, C. K., N. D. Vaziri, K. H. Liang and R. J. Barnard (2001). Reversibility of chronic experimental syndrome X by diet modification. Hypertension 37: 1323-8.

Roberts, C. K., N. D. Vaziri, X. Q. Wang and R. J. Barnard (2000). Enhanced NO inactivation and hypertension induced by a high-fat, refined-carbohydrate diet. Hypertension 36: 423-9.

Ross, C. A., D. A. Ruggiero, D. H. Park, T. H. Joh, A. F. Sved, J. Fernandez-Pardal, J. M. Saavedra and D. J. Reis (1984). Tonic vasomotor control by the rostral ventrolateral medulla: effect of electrical or chemical stimulation of the area containing C1 adrenaline neurons on arterial pressure, heart rate, and plasma catecholamines and vasopressin. J Neurosci 4(2): 474-94.

Sakai, K., Y. Hirooka, I. Matsuo, K. Eshima, H. Shigematsu, H. Shimokawa and A. Takeshita (2000). Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension 36: 1023-8.

Samuni, A., C. M. Krishna, P. Riesz, E. Finkelstein and A. Russo (1988). A novel metal-free low molecular weight superoxide dismutase mimic. J Biol Chem 263(34): 17921-4.

Sandstrom, J., K. Karlsson, T. Edlund and S. L. Marklund (1993). Heparin-affinity patterns and composition of extracellular superoxide dismutase in human plasma and tissues. Biochem J 294 (Pt 3): 853-7.

Sindhu, R. K., C. K. Roberts, A. Ehdaie, C. D. Zhan and N. D. Vaziri (2005). Effects of aortic coarctation on aortic antioxidant enzymes and NADPH oxidase protein expression. Life Sci 76(8): 945-53.





Suzuki, H., A. Swei, B. W. Zweifach and G. W. Schmid-Schonbein (1995). In vivo evidence for microvascular oxidative stress in spontaneously hypertensive rats. Hydroethidine microfluorography. Hypertension 25: 1083-9.

Tai, M. H., L. L. Wang, K. L. Wu and J. Y. Chan (2005). Increased superoxide anion in rostral ventrolateral medulla contributes to hypertension in spontaneously hypertensive rats via interactions with nitric oxide. Free Radic Biol Med 38(4): 450-62.

Taniyama, Y. and K. K. Griendling (2003). Reactive oxygen species in the vasculature: molecular and cellular mechanisms. Hypertension 42: 1075-81.

Tarpey, M. M. and I. Fridovich (2001). Methods of detection of vascular reactive species: nitric oxide, superoxide, hydrogen peroxide, and peroxynitrite. Circ Res 89(3): 224-36.

Turrens, J. F. (1997). Superoxide production by the mitochondrial respiratory chain. Biosci Rep 17(1): 3-8.

Vaziri, N. D., M. Dicus, N. D. Ho, L. Boroujerdi-Rad and R. K. Sindhu (2003). Oxidative stress and dysregulation of superoxide dismutase and NADPH oxidase in renal insufficiency. Kidney Int 63(1): 179-85.

Vaziri, N. D., C. Y. Lin, F. Farmand and R. K. Sindhu (2003). Superoxide dismutase, catalase, glutathione peroxidase and NADPH oxidase in lead-induced hypertension. Kidney Int 63(1): 186-94.

Vaziri, N. D., X. Q. Wang, F. Oveisi and B. Rad (2000). Induction of oxidative stress by glutathione depletion causes severe hypertension in normal rats. Hypertension 36: 142-6.

Weisiger, R. A. and I. Fridovich (1973). Mitochondrial superoxide simutase. Site of synthesis and intramitochondrial localization. J Biol Chem 248(13): 4793-6.







Willette, R. N., S. Punnen, A. J. Krieger and H. N. Sapru (1984). Interdependence of rostral and caudal ventrolateral medullary areas in the control of blood pressure. Brain Res 321(1): 169-74.

Yang, C. H., M. H. Shyr, T. B. Kuo, P. P. Tan and S. H. Chan (1995). Effects of propofol on nociceptive response and power spectra of electroencephalographic and systemic arterial pressure signals in the rat: correlation with plasma concentration. J Pharmacol Exp Ther 275(3): 1568-74.

Yu, B. P. (1994). Cellular defenses against damage from reactive oxygen species. Physiol Rev 74(1): 139-62.

Zalba, G., G. San Jose, M. U. Moreno, M. A. Fortuno, A. Fortuno, F. J. Beaumont and J. Diez (2001). Oxidative stress in arterial hypertension: role of NAD(P)H oxidase. Hypertension 38: 1395-9.

Zhou, M. S., A. G. Adam, E. A. Jaimes and L. Raij (2003). In salt-sensitive hypertension, increased superoxide production is linked to functional upregulation of angiotensin II. Hypertension 42: 945-51.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.14.6.194
論文開放下載的時間是 校外不公開

Your IP address is 3.14.6.194
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code