Responsive image
博碩士論文 etd-0713106-172443 詳細資訊
Title page for etd-0713106-172443
論文名稱
Title
具有高優值C軸選向氧化鋅壓電薄膜及交指式傳感電極之彎曲平板波元件的研究
A Study of Flexural Plate Wave Device with High C-axis Orientation ZnO Piezoelectric Film and Interdigital Transducer
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
92
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-07-07
繳交日期
Date of Submission
2006-07-13
關鍵字
Keywords
氧化鋅壓電薄膜、射頻磁控濺鍍、異向性蝕刻、彎曲平板波
ZnO piezoelectric film, reactive RF sputter, anisotropic etching, FPW
統計
Statistics
本論文已被瀏覽 5656 次,被下載 28
The thesis/dissertation has been browsed 5656 times, has been downloaded 28 times.
中文摘要
本論文結合奈米科技與微機電技術以研發創新型彎曲平板波微感測晶片,並探討其於過敏性疾病檢測上的應用,主要的診斷標的是病患血清中免疫球蛋白E(IgE)之濃度值。在傳統的過敏檢測方法上,是利用血液試藥檢驗法,此法不但耗時而且花費昂貴,然而準確度約只有60%~70%而已;本論文將利用壓電式聲波微感測元件以取代傳統的試藥檢測方法以提高其準確度。在比較過四種主要的聲波感測器QCM, SAW, APM及FPW之優缺點後,本文決定採用彎曲平板波(FPW)的方式作為元件的感測基礎,因為FPW感測器將具有較高的準確度、較高的靈敏度、較低的操作頻率、較短的檢測時間以及較低的製造成本等優點。
本論文將以反應式射頻磁控濺鍍法成長(002)軸向的氧化鋅薄膜,並且透過調變不同的製程參數:如改變基板溫度、氬氣與氧氣的比例以及濺鍍功率等,探討參數變化對壓電薄膜特性的影響,以建立高優質C軸選向氧化鋅壓電薄膜之沉積技術,同時經材料分析方法如XRD、SEM等取得最佳化參數以建立FPW元件模型,進而結合單面異向性蝕刻技術以完成整個矽基FPW感測元件製作,最後由量測結果顯示本文所開發之彎曲平板波微感測器之中心頻率約50∼60MHz。
Abstract
By integrating Nanotechnology and MEMS technology, this thesis aims to research a flexural-plate wave (FPW) sensor for testing Immunoglobulin E (IgE) concentration in blood serum, a significant index for the diagnosis of allergies. The traditional methods of blood assay are time-consuming and costly, and its average accuracy of only 60-70 percent. After compare the major four kinds of acoustic sensor, the FPW sensor demonstrates a high accuracy, high sensitivity, low operation frequency, low diagnosis time and low cost.
This thesis utilizes a reactive RF sputter system to deposite the piezoelectric ZnO thin film. To obtain the high C-axis orientation (002) characteristic of ZnO membrane, many parameters such as substrate temperature, Ar/O2 ratio and RF power have been adjusted and optimized during the sputtering process. The effects of varied parameters will be investigated and analysis by using SEM or XRD facilities.
In this study, we combined the high figure-of-merits ZnO deposition techniques and single-side anisotropic silicon etch process to implement the process integration of FPW device. Finally, this research has demonstrated a 50-60MHz center frequency can be extracted from such silicon-based FPW microsensor.
目次 Table of Contents
目錄
中文摘要………………………………………………………………I
Abstract…………………………………………………………………II
致謝…………………………………………………………………III
目錄…………………………………………………………………IV
圖目錄………………………………………………………………VI
表目錄…………………………………………………………X
第一章 緒論……………………………………………………………1
1-1 前言……………………………………………………………1
1-2 研究動機與論文架構…………………………………………3
第二章 彎曲平板波之原理與分析……………………………………4
2-1 聲波元件簡介……………………………………………… 4
2-1-1剪應力震盪器……………………………………………4
2-1-2表面聲波感測器………………………………………………5
2-1-3剪力水平板波感測器…………………………………………7
2-1-4彎曲平板波感測器……………………………………………8
2-2 壓電效應………………………………………………………20
2-3 壓電薄膜選擇與分析…………………………………………22
2-4 氧化鋅壓電薄膜晶格結構與特性之簡介……………………23
2-5 氧化鋅壓電薄膜沉積與分析…………………………………25
2-5-1氧化鋅薄膜沉積方式選擇…………………………………25
2-5-2 X光繞射分析………………………………………………25
2-5-3掃瞄式電子顯微鏡分析……………………………………28
2-6 反應性射頻磁控濺鍍原理簡介………………………………29
第三章 元件設計與實驗方法…………………………………………32
3-1 彎曲平板波元件模擬與設計…………………………………32
3-1-1彎曲平板波元件模擬………………………………………32
3-1-2彎曲平板波元件佈局設計…………………………………35
3-2 彎曲平板波元件製作…………………………………………41
3-2-1彎曲平板波元件製作流程…………………………………41
3-2-2彎曲平板波元件製作方法…………………………………44
3-3 設備規格與製程參數…………………………………………56
第四章 實驗結果與討論………………………………………………63
4-1 反應性射頻磁控濺鍍氧化鋅薄膜之材料特性分析…………63
4-2 彎曲平板波元件之量測結果與分析…………………………71
第五章 結論及未來展望………………………………………………78
參考文獻………………………………………………………………80
參考文獻 References
[1]「微機電系統技術與應用」,行政院國家科學委員會精密儀器發展中心,2003。
[2] D. S. Ballantine et. al., Acoustic wave sensors:Theory, Design, and Physico-chemical Application, Academic Press, 1997, New York.
[3] Richard W. Cernosek, “An Overview of Acoustic Wave Devices for chemical & biological sensing, Biological Detection, and Materials Characterization”, Solid-State Sensor Lecture, Auburn University, Auburn, AL (2002).
[4] Julian W. Gardner, Vijay k. Varadan and Osama O. Awadelkarim, “Microsensors MEMS and Smart Devices” John Wiely & Sons, Inc., 2001, New York.
[5] Michael Thompson & David C. Stone, Surface-Launched Acoustic Wave Sensors, John Wiley & Sons. Inc. 1997, USA.
[6] M. E. Motamedi and R.M. White, “Acoustic sensor”, in semiconductor sensors, edited by S.M. Sze, John Wiely & Sons, Inc., 1994, New York.
[7] R. M. Richard, “Acoustic sensors for physical, chemical and biochemical applications,”1998 IEEE Internal Frequency Control Symposium, (1998) p.587-594.
[8] M. J. Vellekoop, “Acoustic wave sensors and their technology,” 1997 Ultrasonics proceedings, (1997) p.7-14.
[9] I. Esteban et. al., “Using a formal mathematics software for SH-APM sensor modeling,” Sensors and Actuators A, 67, (1998) p.77-83.
[10] M. G. Schweyer et. al., “Acoustic plate mode sensor for aqueous mercury,” Sensor and Actuators B, 35, (1996) p.170-175.
[11] C. Dejous et. al. , “Shear horizontal acoustic plate mode(SH-APM) sensor for biological media,” Sensor and Actuators B, 27, (1995) p452-456.
[12] T. Sato et. al., “Shear horizontal acoustic plate mode viscosity sensor,” Japan Journal of Applied physics 32 (5B), (1993) p.2392-2395.
[13] S. J. Martine and A. J. Ricco, “Sensing in liquids using acoustic plate mode devices,” “Tech. Dig. Int. Electron. Dev. Meeting, (1987) p.290-293.
[14] T. Nomura and T. Yasuda, “Measurement of acoustic properties of liquids using SH-type surface acoustic waves,” 1990 IEEE Ultrasonics symposium proceedings, (1990) p.307-310.
[15] T. Nomura, M. Uchiyama, A. Saitoh, S. Furukawa, “Measurement of acoustic properties of liquid using SH-and R-mode surface acoustic wave,” 1998 IEEE Internal Frequency Control Symposium, (1998) p.645-651.
[16] S. Furukawa, K. Muzusaki, M. shintani, and T. Nomura, “Characteristics of leaky SAW propagating along liquid/LiNbO3/sapphire structure and its application to liquid sensor,” 1997 IEEE Ultrasonics symposium proceedings, (1993) p.355-358.
[17] S. Furukawa et. al., “Characteristics of leaky surface acoustic wave propagation along liquid/layered-substrates and their application to liquid sensor ,” 1993 IEEE Ultrasonics symposium proceedings, (1997) p.433-436.
[18] A. Leidl, I. Oberlack, U. Schaber, B. Mader, S. Drost, “surface acoustic wave device and applications in liquid sensing,” Smart Material and Structures 6(6), (1997) p.680-388.
[19] B. A. Martin, S. W. Wenzel and R. M. White, “Viscosity and density sensing with ultrasonic plate wave,” Sensors and Actuators A, 22, (1990) p.704-708.
[20] 林素霞,“氧化鋅薄膜的特性改良及應用之研究”,國立成功大學材料科學及工程研究所博士論文,2003年11月.
[21] B. T. khuri-Yakub, J. G. Smits and T. Barbee, “Reactive magnetron sputtering of ZnO”, J. Appl. Phys.52(7), July 1981, p.4772-4774.
[22] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, “Optimization of zinc oxide thin film for surface acoustic wave filters by ratio frequency sputtering”, Vacuum 59 (2000), p.538-545.
[23] 黃琇澤,“以反應濺鍍法製備氧化鋅薄膜與摻雜鋁之研究”,國立中山大學材料科學與工程研究所碩士論文,2003年6月.
[24] 郭益男,“反應性射頻磁控濺鍍氧化鋅薄膜之光激發光特性之研究”,國立中山大學電機工程學系碩士論文,2004年6月.
[25] 蔡來福,“以電漿輔助化學氣相沉積法室溫成長氧化鋅薄膜之研究”,國立中央大學光電科學研究所碩士論文,2002年7月.
[26] A. F. Brown, “Crystal Physics ”1965.
[27]「材料分析」,汪建民主編,中國材料科學學會。
[28]「半導體製程技術導論」,Hong Xiao原著,羅正忠、張鼎張譯,學銘圖書。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.148.102.90
論文開放下載的時間是 校外不公開

Your IP address is 3.148.102.90
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code