Responsive image
博碩士論文 etd-0713106-194511 詳細資訊
Title page for etd-0713106-194511
論文名稱
Title
週期性區域極化反轉鈮酸鋰晶體光纖之研製
The Study and Fabrication of PPLN Crystal Fiber
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2006-06-29
繳交日期
Date of Submission
2006-07-13
關鍵字
Keywords
倍頻、鈮酸鋰、晶體光纖
crystal fiber, PPLN
統計
Statistics
本論文已被瀏覽 5673 次,被下載 22
The thesis/dissertation has been browsed 5673 times, has been downloaded 22 times.
中文摘要
 鈮酸鋰由於其生長容易,且具較高的非線性係數,以及良好的光學性質,因而廣泛的應用於雷射與光通訊系統的光波長轉換元件。

  本論文探討以雷射加熱基座法(LHPG)外加高壓電場,在無光罩電極的情況下,製作週期性區域極化反轉之鈮酸鋰晶體光纖。在製作過程中,藉由微擺動擺幅的控制,增進極化反轉的形成;同時深入的了解與解釋由電場作用所產生的感應電流,並嘗試以物理上的意義來量化與模擬;藉由其波形與微擺幅間的相關性,將微擺幅量化並以程式回授控制,大幅提升晶體光纖生長過程中的穩定性。在光學特性上,我們量測準相位匹配週期為15.45 μm之鈮酸鋰晶纖,其內部倍頻轉換效率可達14.8%。

  在未來除了持續改善整個製程上的穩定性以及區域反轉週期的均勻性,對於量測到的感應電流,希望能更進一步的釐清其與週期性區域極化反轉的關係。另外對剛起步的鉭酸鋰,我們希望能藉助製作鈮酸鋰的經驗及鉭酸鋰居里溫度較低的特性,而更快的達成週期性極化反轉之目的,以期能達到更高的倍頻轉換效率。
Abstract
Due to its easy growth, higher nonlinear coefficients, and better optical characteristics, LiNbO3 is broadly used as nonlinear crystal in laser system and wavelength converter in optical communication systems.

In this thesis, we discuss the use of LHPG method to grow periodically poled LiNbO3 crystal fiber without metallic patterns. During the growth, micro-swing is managed to assist poling process, simultaneously we can understand and simulate the electric-field induced current. Using the relation between current waveform and micro-swing amplitude, we can quantify the micro-swing amplitude, and establish feedback control to enhance the stability during crystal fiber growth process. The achieved internal SHG conversion efficiency is 14.8 % with a quasi-phase matched period of 15.45 μm.

Besides promoting process stability and improving uniformity of domain inversion period, it is our hope that the relation between domain inversion and measured induced current can be clarified in the future. Due to the low Curie temperature of LiTaO3, it is expected that our experience on LiNbO3 can facilitate the development of periodic poling on LiTaO3.
目次 Table of Contents
目錄
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 v
表目錄 viii
第一章 緒論 1
第二章 相位匹配原理與區域反轉機制 4
2.1 非線性效應與雙折射相位匹配 4
2.2 準相位匹配 13
2.3 鈮酸鋰晶體結構與特性 18
2.3.1 鈮酸鋰歷史回顧 18
2.3.2 鈮酸鋰之晶體結構 19
2.3.3 鈮酸鋰之晶體特性 20
2.3.4 鈮酸鋰之摻雜 21
2.4 區域極化反轉的機制 24
第三章 準相位匹配元件之研製 26
3.1 生長方式與架構 26
3.1.1 雷射加熱基座生長法 26
3.1.2 電極架設與外加電場 31
3.2 電場導致微擺動 33
3.2.1 微擺動致區域極化反轉 33
3.2.2 脈衝式波包電場的嘗試 36
3.2.3 外加電場與微擺幅的控制 39
3.2.4 生長系統的控制 41
3.3 電場產生感應電流 44
3.3.1 電流波形與電場及微擺動之關係 44
3.3.2 電流模擬與探討 49
3.3.3 電流監控改善微擺幅的穩定與精確度 52
第四章 光學特性量測與探討 56
4.1 光學特性量測 56
4.2 製程探討與改善 61
第五章 結論 66
5.1 總結 66
5.2 未來展望 66
參考文獻 68
中英對照表 72
附錄:電流波形模擬程式 74
參考文獻 References
[1] P. A. Franken, A. E. Hill, C. W. Peter, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett., vol.7, pp. 118-119, 1961.

[2] O. Tadanaga, M. Asobe, H. Miyazawa, Y. Nishida, and H.Suzuki, “Efficient 1.55μm-band quasi-phase-matched ZnO-doped LiNbO3 wavelength converter with high damage resistance,” Electron. Lett., vol. 39, no. 21, pp. 1525-1537, 2003.
.
[3] M. H. Chou, I. Brener, M. M. Fejer, E. E. Chaban, and S. B. Christman, “1.5μm-band wavelength conversion based on cascaded second-order nonlinearity in LiNbO3 waveguides,” IEEE Photon. Technol. Lett., vol. 11, pp. 653-655, 1999.

[4] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interaction between light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918-1939, 1962.

[5] D. H. Jundt, “Temperature-dependent Sellmeier equation for the index of refraction, ne, in congruent lithium niobate,” Opt. Lett., vol. 22, pp. 1553-1555, 1997.

[6] 林嘉進, “準相位匹配鈮酸鋰晶纖之研製,” 國立中山大學光電工程研究所碩士論文, 2002.

[7] B. T. Matthias and J. P. Remeika, “Ferroelectricity in the illmenite structure,” Phys. Rev., vol. 76, p. 1886, 1949.

[8] A. A. Ballman, “Growth of piezoelectric and ferroelectric materials by the Czochralski technique,” J. Am. Ceram. Soc., vol. 48, p. 112, 1965.

[9] R. L. Byer, J. F. Young, and F. S. Feigelson, “Growth of high-quality LiNbO3 crystals from the congruent melt,” J. Appl. Phys., vol. 41, p. 2320, 1970.

[10] L. Arizmendi, “Phontonic applications of lithium niobate crystals,” Phys. Stat. Sol. (a) vol. 201, no. 2, pp. 253-283, 2004.


[11] A. Prokhorov and Y. Kuz’minov, “Physics and chemistry of crystalline lithium niobate,” The Adam Hilger, 1990.

[12] K. Kitamura, J. K. Yamamoto, N. Iyi, S. Kimura, and T. Hayashi, “Stoichiometric LiNbO3 single crystal growth by double crucible Czochralski method using automatic powder supply system,” J. Crys. Growth, vol. 16, p. 327, 1992.

[13] Y. Furukawa, K. Kitamura, S. Takekawa, K. Niwa, Y. Yajima, N. Iyi, I. Mnushkina, P. Guggenheim, and J. Martin, “The correlation of MgO-doped near-stoichiometric LiNbO3 composition to the defect structure,” J. Crys. Growth, vol. 211, pp. 230-236, 2000.

[14] 胡明理, “Zn:LiNbO3之晶體生長與其特性研究,” 國立中央大學光電科學研究所博士論文,2004.

[15] V. Gopalan and T. E. Mitchell, “The role of nonstoichiometry in 180° domain switching of LiNbO3 crystal,” Appl. Phys. Lett, vol. 72, no. 16, pp. 1981-1983, 1998.

[16] L. -H.Peng, Y. -C.Zhang, and Y. -C. Lin, “Zinc oxide doping effects in polarization switching of lithium niobate,” Appl. phys. Lett., Vol. 78, no. 1, pp. 1-3, 2001.

[17] H. Wang, J. Wen, J. Li, H. Wang, and J. Jing, “Photoinduced hole carriers and enhanced resistance to photorefraction in Mg-doped LiNbO3 crystals,” Appl. Phys. Lett., vol. 57, p. 23, 1990.

[18] K. Niwa, Y. Furukawa, S. Takekawa, K. Kitamura, “Growth and characterization of MgO doped near stoichiometric LiNbO3 crystals as a new nolinear optical material,” J. Crys. Growth, vol. 208, pp. 493-500, 2000.

[19] Y. Tomita, S. Sunarno, and G. Zhang, “Ultraviolet-light-gating two-color photorefractive effect in Mg-doped near-stoichiometric LiNbO3,” J. Opt. Soc. Am. B, vol. 21, no. 4, pp. 753-760, 2004.

[20] D. Xue, K. Betzler, and H. Hesse, “Chemical bond analysis of the seconed order nonlinear optical behavior of Zn-doped lithium niobate,” Opt. Comm., vol. 182, pp.167-173, 2000.
[21] Y. Zhang, Y. H. Xu, M. H. Li, and Y. Q. Zhao, “Growth and properties of Zn doped lithium niobate crystal,” J. Crys. Growth, vol. 233, pp. 537-540, 2001.

[22] J. R. Carruthers, G. E. Peteson, and M. Grasso, “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys., vol. 42, pp. 1846-1851, 1971.

[23] C. S. Lau, P. K. Wei, C. W. Su, and W. S. Warry, “Fabrication of magnesium-oxide-induced lithium out-diffusion waveguides,” IEEE Photon. Technol. Lett., vol. 4, pp. 872-875 , 1992.

[24] Y. Y. Zhi, S. N. Zhu, and J. F. Hong, “Domain inversion in LiNbO3 by proton exchange and quick heat treatment,” Appl. Phys. Lett., vol. 65, pp. 558-560, 1994.

[25] D. Feng, N. B. Ming, J. F. Hong, Y. S. Zhu, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystal with periodic laminar ferroelectric domains,” Appl. Phys. Lett., vol. 37, pp. 607-609, 1980.

[26] H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett., vol. 27, pp. 1221-1222 , 1991.

[27] I. Camlibel, “Spontaneous polarization measurements in several ferroelectric oxides using pulsed-field method,” J. Appl. Phys., vol. 40, pp. 1690-1693, 1969.

[28] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B., vol 12, pp. 2102-2116, 1995.

[29] S. Uda and W. A. Tiller, “The influence of an interface electric field on the distribution coefficient of chromium in LiNbO3,” J. Crys. Growth, vol. 121, pp. 93-110, 1992.

[30] A. A. Ballman and H. Brown, “Ferroelectric domain reversal in lithium metatantalate,” Ferroelectrics, vol. 4, pp. 189, 1972.

[31] M. Fejer and R. Byer, “Ferroelectric domain structures in single-crystal fibers,” J. Crys. Growth, vol. 78, pp. 135-143, 1986.
[32] L. Huang and N. A. F. Jaeger, “Discussion of domain inversion in LiNbO3,” Appl. Phys. Lett., vol. 65, pp. 1763-1765, 1994

[33] 邱博駿, “波長轉換用鈮酸鋰晶體光纖之研製,” 國立中山大學通訊工程研究所碩士論文, 2005.

[34] N. Ohnishi and T. Lizuka, “Etching study of microdomains in LiNbO3 single crystals,” J. Appl. Phys., vol. 46, pp. 1063-1067, 1975.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.116.36.174
論文開放下載的時間是 校外不公開

Your IP address is 18.116.36.174
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code