Responsive image
博碩士論文 etd-0713107-020217 詳細資訊
Title page for etd-0713107-020217
論文名稱
Title
武洛溪人工濕地淨化受污河川水之功能研究
Performance of a 10000 m3/day Constructed Wetland for Treating Polluted River Water
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
130
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-14
繳交日期
Date of Submission
2007-07-13
關鍵字
Keywords
底泥、植物、營養鹽、人工溼地
Pollutant removal, Sewage, FWS, Constructed wetland
統計
Statistics
本論文已被瀏覽 5682 次,被下載 36
The thesis/dissertation has been browsed 5682 times, has been downloaded 36 times.
中文摘要
依設計參數,「武洛溪排水水質改善人工濕地」佔地20 公頃,
處理受污水量50,000 CMD (m3/day)。第一期工程於民國92 年8
月1 日至93 年5 月19 日,面積約2.0 公頃,主要利用自然疊落
過濾法流入蓮花池,續行二次水質淨化;第二期工程於93 年底
完成,主要模擬天然溼地之水文及環境狀態,以人工渠道方式引
流入3 座自由水流動系統(FWS)人工溼地,平均渠道寬度100 公
尺(最窄86 公尺、最寬112 公尺),帶狀長度1,600 公尺,佔地
18 公頃,溼地約9 公頃,經溼地植物(培地茅、香蒲、蘆葦、水
芙蓉)過濾、淨化及攝取營養源等過程,以達淨化水質目的。
本研究在計畫於95 年4-10 月結束之後,11-2 月繼續觀察水
質狀況,溼地水流量、水體體積、水生植物調查結果顯示:(1)
本溼地流量約在10,000-20,000 CMD 間操作,平均為10,762
CMD;(2)平均水體體積為6,800 m3,以平均流量10,762 CMD 計,
平均水力停留時間為0.920 天;(3)由5-10 月之平均滲透量與平均
進流量相較,可知約有40.6%之水量經由滲透而流失。而水蒸發
量及水芙蓉葉蒸散量僅佔進流量之1.2%及0.2%,於計算時可忽
略之;(4)平均溼地面積為46,649 m2,水生植物面積為19,022 m2,
水生植物總重(溼基)為131 公噸,爬拉草、水芙蓉、水蠟燭、空
II
心菜各佔6.0%、12.7%、73.5%及10.1 %。
本研究執行期間水質淨化功能調查結果顯示:
1. 本濕地進流水水質(單位mg/l)範圍(平均值)分別為總COD
(CODT) 10-121 (52)、BOD 6-36 (21)、SS 10-165 (70)、DO
0.1-8.6 (3.6)、pH 5.4-8.1 (7.4)、氨氮2-22 (13)、硝酸氮N.D.-9.4
(2.5)、亞硝酸氮N.D.-1.8 (0.2)、總氮 9.9-41.3 (22.6)、磷酸鹽
磷N.D.-3.1 (0.9)、總磷1.2-36.7 (5.2)、Cu 0.022-0.60(0.071)、
Zn 0.01-0.36 (0.13)。
2. 本濕地水流流至點3 之水質最佳,COD、BOD、SS 去除率
分別為60、66、67%,較流至出口之水質(COD、BOD、SS
去除率分別為56、54、45%)為優。
3. 水中總氮濃度範圍(平均值)由進口9.9-41.3 (22.6)到點3
8.8-46.0 (18.3) ,點4 7.6-70.0 (21.4)、出口7.1-54.1 (18.5)
mg/L,去除率為19、5.6、18%,水蠟燭對TN 吸收的去除效
果較好。
4. 水中總磷(TP)濃度範圍(平均值)由進口1.2-36.7 (5.2)、點3
0.9-51.7 (8.0)、點4 1.5-33.0 (4.8)出口0.6-36.6 (4.8) mg/l,
去除率為-53、8.3、8%,水芙蓉對TP 的吸收的去除效果較
III
好。
5. 水中Cu 濃度範圍(平均值)由進口0.022-0.60 (0.071) mg/l、點
3 0.008-0.048 (0.021) mg/l,出口0.008-0.252 (0.124) mg/l,去
除率為71%、-32.6%。
6. 水中Zn 濃度範圍(平均值)由進口0.01-0.36 (0.13) mg/l、點3
0.03-0.18(0.11) mg/l,出口0.002-0.25 (0.12) mg/l,去除率為
18、12%,綜合這兩點水蠟燭對重金屬吸收是有效的。
7. 底泥Cu 之範圍(平均值)由進流點之47.3-556 (206) mg/kg
(dry base)降低至出流點之16.7-74.4 (45.2) mg/kg (dry base),
平均降低78%。植物體Cu 之範圍(平均值)由進流點之7.4-223
(49.4) mg/kg (dry base)降低至出流點之4.2-27.9 (13.8) mg/kg
(dry base),平均降低72%。
8. 底泥Zn 之範圍(平均值)由進流點之123.8-739.0 (326.5)
mg/kg (dry base)降低至出流點之77.5-177.7 (123.0) mg/kg
(dry base),平均降低62%。植物體Zn 之範圍(平均值)由進
流點之31-262.4 (101.4) mg/kg (dry base)降低至出流點之
28.7-96.3 (52.0) mg/kg (dry base),平均降低49%。
Abstract
The Wu-Luo River located in the Ping-Tong County of southern
Taiwan has long been polluted by untreated domestic and partially treated
poultry wastewaters and is among the most polluted rivers in Taiwan. A
full-scale constructed wetland (CW) has been in operation since January
of 2005 for cleaning a part of the polluted river water. The purpose of
this study was to investigate the specifications of the CW and its
performance for removing both organic and inorganic pollutants form the
influent water.
Results indicate that during the investigation period of April 2006 to
February 2007, the CW had channel widths of 86-112 m (average 100 m)
and a zone-type length of 1,600 m. It occupied a total area of 18
hectares in which around 9 hectares were wetted by the introduced river
water. Around 4.7 hectares of the CW was flooded by the river water
and 1.9 hectares were occupied by emergent and floating plants such as
cattail, water lettuce, reed, water celery, and bara grass. A total water
volume of around 6,800 m3 was estimated. In the period, 10,000-20,000
m3/day (CMD) (average 10,800 CMD) of the polluted river water was
introduced to the CW and a hydraulic retention time (HRT) of 0.63 day
was estimated for the flowing water in the through the water body.
Results also indicated that the influent water has the following
qualities (unit in mg/L except pH and number in parentheses indicates the
average value): total COD (CODt) 10-121 (52), BOD 6-36 (21),
suspended solids (SS) 10-165 (70), pH 5.4-8.1 (7.4), ammonia-N 2-22
V
(13), nitrate-N 0-9.4 (2.5), nitrite-N 0-1.8 (0.2), total-N (TN) 9.9-41.3
(22.6), phosphate-P 0-3.1 (0.9), total-P (TP) 1.2-36.7 (5.2), Cu 0.022-0.60
(0.071), and Zn 0.01-0.36 (0.13). It was found that water sampled from
nearly the middle point of the CW got better clarification results than that
from the effluent end. Pollutant removal efficacies were 60, 60, and
67%, respectively, for CODt, BOD, and SS at the middle point, while 56,
54, and 45%, respectively, for CODt, BOD, and SS at the effluent end.
Organics, N, and P released from rotten plants were responsible for the
poor water qualities at the end. The CW had only a TN removal
efficacy of around 18% and no TP removal effect.
目次 Table of Contents
摘要 Ⅰ
Abstract Ⅳ
誌謝 Ⅵ
目錄 Ⅶ
表目錄 ⅩⅠ
圖目錄 ⅩⅡ

第一章 前言 1
1.1 研究緣起 1
1.2 研究方向及目的 3
第二章 文獻回顧 4
2.1 溼地的定義 4
2.2溼地的種類 5
2.3濕地的功能與價值 6
2.4人工溼地概論 9
2.5人工溼地的種類 10
2.6人工溼地的基礎結構 11
2.7 ph變化 12
2.8 人工濕地的去污機制 13
2.9土壤的氧化還原電位的影響 14
2.10懸浮固體之去除 16
2.11有機物之去除 16
2.12營養鹽的去除及循環 17
2.12.1碳的轉換及循環 17
2.12.2磷的去除及循環 19
2.12.3 氮的去除及循環 21
2.13重金屬的去除 22
2.14人工濕地規劃原則與流程 24
2.15都市廢水之濕地處理 26
第三章 研究之設備與方法 30
3.1 武洛溪人工濕地系統概述 30
3.2 植物種類 32
3.3 研究項目與分析 35
3.3.1 樣品採集 35
3.3.2 水質採樣 36
3.4 人工濕地系統現場參數量測 40
第四章 結果與討論 44
4.1水質參數量測 44
4.1.1 CODt淨化功能 44
4.1.2 CODs的淨化功能 45
4.1.3 BOD淨化功能 46
4.1.4 SS淨化功能 46
4.1.5 pH變化 48
4.1.6 DO變化 48
4.1.7 氮淨化功能 49
4.1.7.1氨氮淨化功能 49
4.1.7.2 硝酸鹽氮淨化功能 49
4.1.7.3 亞硝酸鹽氮淨化功能 51
4.1.7.4 總氮淨化功能 51
4.1.8 磷淨化功能 51
4.1.9 Cu之去除率 52
4.1.10 Zn變化 53
4.2 系統參數量測 79
4.2.1 流量、蒸發量及滲透量計算 79
4.2.2 濕地面積及植栽生長狀況 80
4.2.3 斷面及水力停留時間 82
4.3 水量的多寡與污染物的關係 83
4.4 季節的變化與污染物的關係 84
4.4.1 營養鹽與季節的關係 84
4.4.2 金屬物質與底泥的變化 85
4.5植栽變更及收割 88
4.6溼地植物植栽變化 89
第五章 結論 98
參考文獻 101
附錄 A1-1
參考文獻 References
參考文獻
1. 周明顯、彭致豪,人工濕地污水處理技術(上、下),永續發展簡訊,第十二、十三期,經濟部水利署,中華民國94年3月、6月。
2. 古靜洋,高屏溪右岸舊鐵橋人工溼地的規劃與設計,台灣濕地,57,pp. 6-16,民國94年6月。
3. 楊磊等,純淨的流水年華--高屏溪舊鐵橋人工溼地之水質監測與管理,台灣濕地,57,pp. 17-29,民國94年6月。
4. 溫清光等人,武洛溪排水(高屏溪流域)污染整治施政計畫,環境保護署,民國92年。
5. 陳世偉、周志儒、張有義、曾國鴻,武洛溪排水水質改善工程效能評估,台灣環境資源永續發展研討會,宜蘭,民國94年10月。
6. 台灣永續工程顧問有限公司,屏東縣河川流域生態工法水質淨化工程細部規劃設計,屏東縣環保局,民國94年12月。
7. 邱文彥,2003,「海岸管理:理論與實務」,國立編譯館審定,五南圖書出版公司印行。
8. 李志源等,1997,利用人工溼地三級處理生活污水,國立台灣海洋大學河海工程學系。
9. 李志源,1999,「濕地對於水資源之保育管理及永續利用 1計劃六:本土化人工濕地設計資料庫之建立【I】」,行政院國家科學委員會專題研究計畫成果報告(NSC88-2621-Z019-002),台北。
10. 薛聰賢,「台灣原生景觀植物圖鑑 = The scenic plants of Taiwan originals」薛聰賢編著/攝影;呂勝由,鄭元春攝影,[彰化縣]員林鎮 : 薛聰賢出版 [臺北縣]新店市 : 農學社總經銷, 民國92。
11. 林瑩峰、荊樹仁、陳欽昭、施凱鐘,2004,「人工濕地生態工法在水汙染防治上的應用及案例」,行政院公共工程委員會。
Arash M., Kevin F., Ken J. H. and Sheldon J.B.D. (2005),“The effectiveness of constructed wetland for treatment of woodwaste leachate, ” Ecological Engineering, Volume 25, Issue 5, 1 December, Pages 552-566.
Blazejewski, R. and Murat-Blazejewska, S. (1997), “Soil Clogging Phenomena in Constructed Wetlands with Subsurface Flow,” Wat. Sci. Tech., 35(5), pp. 183-188.
Brix, H. & Schierup, H. (1989), “The use of aquatic macrophytes in water pollution control,” AMBIO, 18, 100-107.
Brooks, A. S.; Rozenwald, M. N.; Geohring, L. D.; Lion, L. W.; Steenhuis, T. S. (2000), “Phosphorus removal by wollastonite: A constructed wetland substrate,” Ecological Engineering, Volume: 15, Issue: 1-2, June, pp. 121-132.
Cowardin, L.M., D.S. Cater, F.C. Golet, and E.T. LaRoe (1979), “Classification of Wetlands and Deepwater Habitats of the United States,” U.S. & Wildlife Service Pub. FWS/OBS-79/31, Washington, D.C., 103 p.
Crites, R.W., Dombeck, G.D., Watson, R.C., Williams, C.R.(1997), “Removal of metals and ammonia in constructed wetlands,” Water Environment Research, 69 (2), 132–135.
Coveney M. F., Stites D. L., Lowe E. F., Battoe L. E. and Conrow R. (2002), ”Nutrient removal from eutrophic lake water by wetland filtration, ” Ecological Engineering, Volume 19, Issue 2, August, Pages 141-159.
David J. W. and Sigrid H. (2002), “The reduction of heavy metals in a storm water wetland, ” Ecological Engineering, Volume 18, Issue 4, 1 March, Pages 407-414.
Daniel F. F. and William J. M. (2007), “Hydrology and nutrient biogeochemistry in a created river diversion oxbow wetland,” Ecological Engineering, Volume 30, Issue 2, 1 June, Pages 93-102.
Department of Land and Water Conservation (DLWC) (1998), “The constructed wetland manual.1 DLWC.” New South Wales. Diederik P. L. R., Peter A. V. and Niels D. P. (2004), “Constructed wetlands in Flanders: a performance analysis,” Ecological Engineering, Volume 23, Issue 3, 1 November, Pages 151-163.
Dunne E.J., Culleton N., O’Donovan G., Harrington R. and Daly K. (2005), “Phosphorus retention and sorption by constructed wetland soils in Southeast Ireland,” Water Research, Volume 39, Issue 18, November, Pages 4355-4362.
Guo, T., D., R., Patrick, W. (1997b), “The influence of sediment redox chemistry on chemically active forms of arsenic, cadmium, chromium and zinc in estuarine sediment,” Environ. Int. 23, 305–316.
Hammer D. A. and Bastian R. K. (1989), “Wetlands ecosystems: Natural water Purifiers Constructed Wetlands for Wastewater Treatment Municipal,” Industrical and Agricultural. pp.5-19.
Jing, Shuh-Ren; Lin, Yin-Feng; Lee, Der-Yuan; Wang, Tze-Wen (2001), “Nutrient removal from polluted river water by using constructed wetlands,” Bioresource Technology, Volume: 76, Issue: 2, January , pp. 131-135.
Jing, S. R., Lin, Y.F, Lee, D.Y. and Wang T.W. (2001), “Use CW Systems to Remove Solids from Highly Polluted River Water,” Water Science and Technology: Water Supply, 1(1), 89-96.
Jennifer A. S., Andrew H. B. and Christopher A. S. (1999), ” An evaluation of a constructed wetland to treat wastewater from a dairy farm in Maryland, USA,” Ecological Engineering, Volume 14, Issues 1-2, September, Pages 199-206.
Keffala C.; Ghrabi A. (2005), “Nitrogen and bacterial removal in constructed wetlands treating domestic waste water,” Desalination Volume: 185, Issue: 1-3, November 1, pp. 383-389.
Kadlec R.H.and Knight R.L. (1996), “Treatment Wetlands,” CRC Press, FL.s Maine M.A., N. Suñe, H. Hadad, G. Sánchez and C. Bonetto (2006), “Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry,” Ecological Engineering, Volume 26, Issue 4, 31 July, Pages 341-347.
Margaret G. and Anne W. (1999), “Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation,” Ecological Engineering, Volume 12, Issues 1-2, January, Pages 39-55.
Matheson F., Nguyen M., Cooper A., Burt T., Bull E. (2002), “Fate of 15N-nitrate in unplanted, planted and harvested riparian wetland soil microcosms,” Ecol. Eng., 19, 249–264.
Nahlik A. M. and Mitsch W. J. (2006), “Tropical treatment wetlands dominated by free-floating macrophytes for water quality improvement in Costa Rica,” Ecological Engineering, Volume 28, Issue 3,1 December, Pages 246-257.
Obarska-Pempkoeiak, H., Klimkowska, K. (1999), “Distribution of nutrients and heavy metals in a constructed wetland system,” Chemosphere 39 (2), 303–312.
Richard, K. O. (1993), “Evaluating the role of created and natural wetlands in controlling nonpoint source pollution,” In C. K. Smoley, Ed., Created and natural wetlands for controlling nonpoint source pollution, U. S. EPA.
Reed,S.C. (1993), “Subsurface flow constructed wetlands for wastewater treatment :a technology assessment,” EPA 832-R-93-001.
Rai, U.N., Sinha, S., Tripathi, R.D., Chandra, P. (1995), “Wastewater treatability potential of some aquatic macrophytes: removal of heavy metals,” Ecological Engineering, 5, 5–12.

Richardson,C.J. (1985), “Mechanism controlling phosphorus retention capacity in freshwater wetlands,” Science, 288, 1424-1427.
Robert H. K. and Robert L.K. (1996), “Treatment wetland,” in Lewis Publishers, pp 51.
Sikora, F. J.; Zhu, T. ; Behrends, L. L.; Steinberg, S. L.; Coonrod, H. S. (1995), “Ammonium removal in constructed wetlands with recirculating subsurface flow: removal rates and mechanisms,” Water Science and Technology,Volume: 32, Issue: 3, pp. 193-202.
Salt D.E., Blaylock M., Kumar N.P.B.A., Dushenkov V.,Ensley B.D., Chet I., Raskin I.(1995), “Phytoremediation:a novel strategy for the removal of toxic metals from the environment using plants,” Biotechnology 13, 468–474.
Sharma S.S., Gaur J.P. (1995), “Potential of Lemna polyrhiza for removal of heavy metals,” Ecological Engineering, 4 (1), 37–45.
Tong Z. ; Sikora F. J. (1995), “Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands,” Water Science and Technology, Volume: 32, Issue: 3, pp. 219-228.
Tang S. (1993),“Experimental study of a constructed wetland for treatment of acidic wastewater from an iron mine in China,” Ecological Engineering 2, 253–259.
Tarnocai C. (1979), “Canada wetland registry,” in Proceedings of Workshop on Canadian Wetlands Environment, C.D.A. Rubec and F.C.Pollett,eds., Canada Land Directorate, Ecological Land Classification.
van Oostrom, A. J. (1995),“Nitrogen removal in constructed wetlands treating nitrified meat processing effluent,” Water Science and Technology, Volume: 32, Issue 3, , pp. 137-147.
William B. G., Bradley W. H., Rodgers J.H., Manuel L. C. and Philip B. D.(2000),“Transfers and transformations of zinc in constructed wetlands: Mitigation of a refinery effluent,” Ecological Engineering, Volume 14, Issue 3, February, Pages 279-292.
Wathugala A.G., Suzuki T. and Kurihara Y. (1987), “Removel of nitrogen, phoaphorus and COD from wastewater using sand filtration system with Phragmites australis,” Wat.Res.21,1217-1224.
William J. M., John W. D., Li Z. and Robert R. L. (2005), “Nitrate-nitrogen retention in wetlands in the Mississippi River Basin,” Ecological Engineering, Volume 24, Issue 4, 5 April, Pages 267-278.
Mitsch W. J., Gosselink J. G. (c2000), “Wetlands,” New York : John Wiley Publishing

Zoltai S. C. (1979), “An outline of the wetland regions of Canada, in Proceeding of a Workshop on Canadian Wetlands,” C.D.A. Rubec and F.C. Pollett, eds., Environment Canada, Lands Directorate, Ecological Land Classification Series, No.12, Saskatoon, Saskatchwan, pp1-8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內公開,校外永不公開 restricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.117.229.92
論文開放下載的時間是 校外不公開

Your IP address is 18.117.229.92
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code