Responsive image
博碩士論文 etd-0713107-120021 詳細資訊
Title page for etd-0713107-120021
論文名稱
Title
DNA分子於漸縮漸擴流道之拉伸及變形研究
Stretching and Deformation of DNA Molecules in Converging-Diverging Microchannels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
111
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2007-06-28
繳交日期
Date of Submission
2007-07-13
關鍵字
Keywords
水力拉伸、微質點影像測速儀、DNA分子、共軛焦雷射掃瞄顯微鏡、變形、形態
MPIV, CLSM, Hydrodynamic, DNA molecules, Deformation, conformation
統計
Statistics
本論文已被瀏覽 5662 次,被下載 3546
The thesis/dissertation has been browsed 5662 times, has been downloaded 3546 times.
中文摘要
本研究設計縮擴比4:1:4的漸縮漸擴流道,藉由改變縮擴角度(45°及90°),期望產生一均勻伸展流及齊次的應變率觀測DNA水力拉伸情形。我們利用微質點影像測速儀(Micrometer resolution Particle Image Velocimetry, MPIV)計算局部應變率,評估DNA伸長量,並且搭配共軛焦雷射掃瞄顯微鏡(Confocal Laser Scanning Microscopy, CLSM)探討DNA承受之流體阻力及其造成的形態變化和應力鬆弛時間。實驗選擇調配稀薄溶液,並且控制流量變化及黏滯度的改變為1、10、20cP(Centipoise),搭配微機電製程技術製作微流體系統,對於以壓力驅動流場對DNA分子運動、機械性質的測定及解析形態轉變的空間行為等動態物理現象做量測。另外,經由分析DNA分子受力-拉伸模式,可以估算出公式來預測,建立DNA在水力拉伸中的簡單模型。
Abstract
In this study, sharp/gradual converging-diverging microchannels with contraction/ expansion ratio of 4:1/1:4 was designed to generate elongational flow with uniform velocity in the centerline. The λ-DNA stained with YOYO-1 was observed in the flow. MPIV was built to measure the velocity distribution and local strain rate was estimated by MPIV measurements. The deformation and conformation of individual DNA molecules in the flow was visualized with confocal laser scanning microscopy (CLSM). The goal of the present work was to develop a method for stretching DNA molecules, in order to perform analysis of coil-stretch transition of DNA. By measuring dynamic properties and relaxation time of DNA molecules stretched by pressure driven at various flow rate and viscosity, we have shown how one could investigate the influence of hydrodynamic interactions in the case of stretching of DNA molecules.
目次 Table of Contents
第一章 序論.......................................................................................... 1
1-1 前言............................................................................................ 1
1-1-1 DNA的結構與性質................................................... 1
1-1-2 微機電系統與生醫晶片............................................. 2
1-1-3 微流體系統簡介…..................................................... 3
1-1-4 複雜流體..................................................................... 4
1-2 背景與目的................................................................................ 4
1-3 文獻回顧.................................................................................... 7

第二章 實驗系統與設備..................................................................... 12
2-1 微質點影像測速儀系統.......................................................... 12
2-2 共焦雷射掃瞄顯微鏡量測系統.............................................. 13
2-3 製程設備.................................................................................. 14
2-4 實驗其他設備.......................................................................... 16

第三章 實驗方法及步驟..................................................................... 34
3-1 微流道設計與製程.................................................................. 34
3-2 工作流體配製.......................................................................... 37
3-3 微流道測試及環路架設.......................................................... 37
3-4 MPIV量測系統建立及原理................................................... 38
3-5 CLSM量測系統建立及原理.................................................. 39
3-6 流動速度分析及螢光可視化.................................................. 40

第四章 理論分析................................................................................. 52
4-1 DNA分子流變學拉伸理論..................................................... 52
4-2 無因次參數及分析.................................................................. 53

第五章 誤差分析................................................................................. 59

第六章 結果與討論............................................................................. 63
6-1 MPIV之流場量測.................................................................... 63
6-2 DNA分子螢光觀測及分析..................................................... 63
6-3 DNA分子受力及拉伸分析..................................................... 65
6-4 DNA分子拉伸模型分析......................................................... 68

第七章 結論與建議............................................................................. 84
7-1 結論.......................................................................................... 84
7-2 建議與改進.............................................................................. 85

參考文獻................................................................................................... 87
附錄A........................................................................................................ 92

表 目 錄
表2-1 MPIV雷射主要規格................................................................ 18
表2-2 80C77 Hisense CCD camera 詳細規格................................... 19
表2-3 本實驗共焦雷射掃描顯微鏡(Olympus FV300)詳細規格..... 20
表2-4 工具顯微鏡STM6詳細規格.................................................... 21
表3-1 流道幾何參數............................................................................ 41
表3-2 製程及相關參數........................................................................ 42
表3-3 工作流體之主要配方................................................................ 43
表3-4 MPIV量測參數和條件............................................................. 44
表5-1 物理系統相關尺寸及參數誤差................................................ 62
表6-1 漸縮漸擴流道相關參數............................................................ 70
表6-2 突縮突擴流道相關參數............................................................ 71
表6-3 DNA分子(a)平均觀測長度及(b)平均拉伸長度之彙整表..... 72

圖 目 錄
圖1-1 DNA雙螺旋結構示意圖.......................................................... 11
圖2-1 MPIV立體示意圖..................................................................... 22
圖2-2 MPIV雷射本體......................................................................... 23
圖2-3 CCD攝影機............................................................................... 23
圖2-4 顯微鏡........................................................................................ 24
圖2-5 處理器........................................................................................ 24
圖2-6 Olympus FV300 系統............................................................... 25
圖2-7 Olympus FV300 掃描元件示意圖........................................... 26
圖2-8 抽氣櫃........................................................................................ 27
圖2-9 旋轉塗佈機................................................................................ 27
圖2-10 加熱烤板.................................................................................... 28
圖2-11 單面對準曝光機........................................................................ 28
圖2-12 工具顯微鏡................................................................................ 29
圖2-13 超音波震盪機............................................................................ 29
圖2-14 表面輪廓儀................................................................................ 30
圖2-15 紫外光臭氧清洗機.................................................................... 30
圖2-16 精密熱風烤箱............................................................................ 31
圖2-17 低溫藥品冷藏櫃........................................................................ 31
圖2-18 注射式幫浦…............................................................................ 32
圖2-19 精密電子天秤............................................................................ 32
圖2-20 可調式微量吸管 (a) Gilson P2 (b) Eppendorf 4910............. 33
圖3-1 漸縮漸擴流道觀測示意圖 (於xz平面及y = 40μm).............. 45
圖3-2 突縮突擴流道觀測示意圖 (於xz平面及y = 40μm).............. 46
圖3-3 流道製程圖…............................................................................ 47
圖3-4 Micro-PIV system示意圖......................................................... 48
圖3-5 Olympus IX71/FV300 Confocal Laser Scanning Microscope示
意圖........................................................................................... 49
圖3-6 CLSM工作原理....................................................................... 50
圖3-7 (a) JOJO-1吸收波長與放射波長 (b) YOYO-1吸收波長與放
射波長....................................................................................... 51
圖4-1 DNA分子受力運動簡單模型 (a) 珠與棍模型 (b)珠與彈簧
模型........................................................................................... 56
圖4-2 流向應變率計算示意圖............................................................ 57
圖4-3 流變學流動區塊示意圖............................................................ 58
圖6-1 固定流量= 50 μl/hr時,隨各種黏滯度DNA分子速度與觀測
位置之關係............................................................................... 73
圖6-2 中央觀測區中DNA分子固定流量= 50 μl/hr,t = 30 秒時觀測
長度之分布 (a)、(c)、(e) Case 1 分別有88、83、80個分子(b)、
(d)、(f) Case 2分別有82、80、77個分子............................... 74
圖6-3 中央觀測區中DNA分子固定流量= 30 μl/hr,t = 30 秒時觀測
長度之分布 (a)、(c)、(e) Case 1 分別有90、85、81個分子(b)、
(d)、(f) Case 2分別有91、83、80個分子............................... 75
圖6-4 中央觀測區中DNA分子固定流量= 10 μl/hr,t = 30 秒時觀測
長度之分布 (a)、(c)、(e) Case 1 分別有95、91、87個分子(b)、
(d)、(f) Case 2分別有98、93、88個分子............................... 76
圖6-5 固定流量之DNA分子於不同黏滯度之拉伸圖..................... 77
圖6-6 DNA分子最大拉伸長度與受力關係及DNA拉伸圖(比例尺
= 5μm)(a) Case 1 (漸縮漸擴流道) 於不同黏滯度 (b) Case 2
(突縮突擴流道) 於不同黏滯度。De主導線性轉變,Pe造成
非線性的拉伸。兩者以伸長量∼5.8μm作區分...................... 78
圖6-7 實驗之DNA分子拉伸與預測之DNA分子拉伸誤差關係圖
(a) Case 1 (漸縮漸擴流道) (b) Case 2 (突縮突擴流道) ..........79
圖6-8 拉伸比率與 F/μVLc 之關係於黏滯度= 1cP、10cP、20cP.......80
圖6-9 本實驗之水力受力與蠕蟲鏈模型受力之關係........................ 81
圖6-10 (a) De與Re之關係圖 (b) De,Re與ζ*之關係圖.................. 82
圖6-11 拉伸比率與Pe之關係圖......................................................... 83
參考文獻 References
1. P. G. De Gennes, “Coil-Stretch Transition of Dilute Flexible Polymers under Ultrahigh Velocity Gradients,” J. Chem. Phys. Vol. 60, 1974, pp. 5030-5042.
2. T. T. Perkins, S. R. Quake, D. E. Smith, and S. Chu, “Relaxation of a Single DNA Molecule Observed by Optical Microscopy,” Science, Vol. 264, 1994, pp. 822-826.
3. T. T. Perkins, D. E. Smith, R. G. Larson, and S. Chu, “Stretching of a Single Tethered Polymer in a Uniform Flow,” Science, Vol. 268, 1995, pp. 83-87.
4. S. B. Smith, L. Finzi, and C. Bustamante, “Direct Mechanical Measurements of The Elasticity of Single DNA Molecules by Using Magnetic Beads,” Science, Vol. 258, 1992, pp. 1122-1126.
5. F. Amblard, B. Yurke, A. Pargellis, and S. Leibler, “ A Magnetic Manipulator for Studying Local Rheology and Micromechanical Properties of Biological Systems,” Rev. Sci. Instrum., Vol. 67, 1996, pp. 818-827.
6. R. G. Larson, T. T. Perkins, D. E. Smith, and S. Chu, “Hydrodynamics of a DNA Molecule in a Flow Field,” Phys. Rev. E., Vol. 55, 1997, pp. 1794-1797.
7. P. K. Wong, Y. K. Lee, and C. M. Ho, “Deformation of DNA Molecules by Hydrodynamic Focusing,” J. Fluid Mech., Vol. 497, 2003, pp. 55-65.
8. R. G. Larson, “The Structure and Rheology of Complex Fluids,” Oxford University Press, 1999, New York.
9. D. E. Smith, H. P. Babcock, and S. Chu, “Single Polymer Dynamics in Steady Shear Flow,” Science, Vol. 283, 1999, pp. 1724-1727.
10. P. S. Doyle, B. Ladoux, and J. L. Viovy, “Dynamics of a Tethered Polymer in Shear Flow,” Phys. Rev. Lett., Vol. 84, 2000, pp. 4769-4772.
11. P. J. Shrewsbury, S. J. Muller, and D. Liepmann, “Effect of Flow on Complex Biological Macrcmolecules in Microfluidic Devices,” Biomedical Microdevices, Vol. 3, 2001, pp. 225-238.
12. P. J. Shrewsbury, D. Liepmann, and S., J. Muller, “Concentration Effects of a Biopolymer in a Microfluidic Device,” Biomedical Microdevices, Vol. 4, 2002, pp. 17-26.
13. T. T. Perkins, D. E. Smith, and S. Chu, “Single Polymer Dynamics in an Elongational Flow,” Science, Vol. 276, 1997, pp. 2016-2021.
14. D. E. Smith and S. Chu, “Response of Flexible Polymers to a Sudden Elongational Flow,” Science, Vol. 281, 1998, pp. 1335-1340.
15. S. B. Smith, Y. Cui, and C. Bustamante, “Overstretching B-DNA: The Elastic Response of Individual Double-Stranded and Single-Stranded DNA Molecules,” Science, Vol. 271, 1996, pp.795-799.
16. P. S. Doyle and B. Ladoux, “Stretching Tethered DNA Chains in Shear Flow,” Europhys. Lett., Vol. 52, 2000, pp. 511-517.
17. J. Zheng, H. W. Li, and E. S. Yeung, “Manipulation of Single DNA Molecules Via Lateral Focusing in a PDMS/Glass Microchannel,” J. Phys. Chem. B, Vol. 108, 2004, pp. 10357-10362.
18. Y. J. Juang, S. Wang, X. Hu, and L. J. Lee, “Dynamics of Single Polymers in a Stagnation Flow Induced by Electrokinetics,” Phys. Rev. Lett. Vol. 93, 2004, pp. 2681051-2681054.
19. T. F. Chan, C. Ha, A. Phong, D. Cai, E. Wan, L. Leung, P. Y. Kwok, and M. Xiao, “A Simple DNA Stretching Method for Fluorescence Imaging of Single DNA Molecules,” Nucleic Acids Res., Vol. 34, 2006, pp.e113.
20. J. H. Kim, W. X. Shi, and R. G. Larson, “Methods of Stretching DNA Molecules Using Flow Fields,” Langmuir, Vol. 23, 2007, pp. 755-764.
21. P. A. Stone, S. D. Hudson, P. Dalhaimer, D. E. Discher, E. J. Amis, and K. B. Migler, “Dynamics of Wormlike Micelles in Elongational Flows,” Macromolecules, Vol. 39, 2006, pp. 7144-7148.
22. 黃彥祥, “DNA分子在漸縮微渠道中流動的拉伸及動態特性, ” 國立交通大學機械工程學系碩士論文, 2003.
23. 伍秀菁, 汪若文, 林美吟編輯, “微機電系統技術與應用, ” 國科會精密儀器發展中心出版, 2003.
24. R. G. Larson, “The Rheology of Dilute Solutions of Flexible Polymers: Progress and Problems,” Journal of Rheology, Vol. 49, 2005, pp. 1-70.
25. D. V. Boger, R. J. Binnington, “Circular Entry Flows of Fluid M1,” J. Non-Newtonian Fluid Mech., Vol. 35, 1990, pp. 339-360.
26. T. M. Squires and S. R. Quake, “Microfluidics: Fluid Physics at The Nanoliter Scale,” Reviews of Modern Physics, Vol. 77, 2005, pp. 977-1026.
27. G. C. Randall and P. S. Doyle, “Electrophoretic Collision of a DNA Molecule with an Insulating Post,” Phys. Rev. Lett., Vol. 93, 2004, pp. 058102.1-058102.4.
28. G. C. Randall and P. S. Doyle, “Collision of a DNA Polymer with a Small Obstacle,” Macromolecules, Vol. 39, 2006, pp. 7734-7745.
29. P. D. Patel and Eric S. G. Shaqfeha, “A Computational Study of DNA Separations in Sparse Disordered and Periodic Arrays of Posts,” J. Chem. Phys., Vol. 118, 2003, pp. 2941-2951.
30. J. R. Taylor, An Introduction to Error Analysis, University Science Books, Sausalito, 1997.
31. S. -S. Hsieh, C. -H. Liu, and J. -H. Liou, “DNA Molecules Dynamics in a Cross-Slot Microchannel,” (Submitted to Measurement Science and Technology for Publication)
32. S. J. Muller, “Velocity Measurements in Complex Flows of Non-Newtonian Fluids,” Korea-Australia Rheology J., Vol. 14, 2002, pp. 93-105.
33. R. M. Robertson, S. Laib, and D. E. Smith, “Diffusion of Isolated DNA Molecules: Dependence on Length and Topology,” PNAS, Vol. 103, 2006, pp. 7310-7314.
34. M. Kröger, A. Alba-Pérez, M. Laso, and H. C. Öttinger, “Variance Reduced Brownian Simulation of a Bead-Spring Chain Under Steady Shear Flow Considering Hydrodynamic Interaction Effects,” J. Chem. Phys., Vol. 113, 2000, pp. 4767-4773.
35. E. S. G. Shaqfeh, “The Dynamics of Single-Molecule DNA in Flow,” J. Non-Newtonian Fluid Mech., Vol. 130, 2005, pp. 1-28.
36. C. Bustamante, Z. Bryant, and S. B. Smith, “Ten Years of Tension: Single-Molecule DNA Mechanics,” Nature, Vol. 421, 2003, pp. 423-427.
37. R. M. Jendrejack, E. T. Dimalanta, D. C. Schwartz, M. D. Graham, and J. J. de Pablo, “DNA Dynamics in a Microchannel,”Phys. Rev. Lett., Vol. 91, 2003, pp. 038102.
38. R. M. Jendrejack, D. C. Schwartz, M. D. Graham, and J. J. de Pablo, “Effect of Confinement on DNA Dynamics in Microfluidic Devices,” J. Chem. Phys., Vol. 119, 2003, pp. 1165-1173.
39. J. F. Marko, E. D. Siggia, and S. Smith, “Entropic Elasticity of λ-Phage DNA,” Science, Vol. 265, 1994, pp. 1599-1600.
40. J. P. Rothstein, G. H. McKinley, “Extensional Flow of a Polystyrene Boger Fluid Through a 4:1:4 Axisymmetric Contraction/Expansion,” J. Non-Newtonian Fluid Mech., Vol. 86, 1999, pp. 61-88.
41. L. E. Rodd, T. P. Scott, D. V. Boger, J. J. Cooper-White, and G. H. McKinley, “The Inertio-Elastic Planar Entry Flow of Low-Viscosity Elastic Fluids in Micro-Fabricated Geometries,” J. Non-Newtonian Fluid Mech., Vol. 129, 2005, pp. 1-22.
42. J. Guan and L. J. Lee, “Generating Highly Ordered DNA Nanostrand Arrays,” PNAS, Vol. 102, 2005, pp. 18321-18325.
43. Q. Gu, C. Cheng, R. Gonela, S. Suryanarayanan, S. Anabathula, K. Dai1 and D. T Haynie, “DNA Nanowire Fabrication,” Nanotechnology, Vol. 17, 2006, pp. R14-R25.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code