Responsive image
博碩士論文 etd-0713111-123751 詳細資訊
Title page for etd-0713111-123751
論文名稱
Title
三環共振器之特性分析與感測應用
Analysis and Sensing Applications of Triple-Ring Resonators
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
97
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-29
繳交日期
Date of Submission
2011-07-13
關鍵字
Keywords
三環共振器、感測、絕緣層上覆矽、有限時域差分法、靈敏度
sensing, sensitivity, triple-ring resonator, FDTD, SOI
統計
Statistics
本論文已被瀏覽 5657 次,被下載 0
The thesis/dissertation has been browsed 5657 times, has been downloaded 0 times.
中文摘要
絕緣層上覆矽結構的微環型共振器在感測應用方面有體積小與高靈敏度的優點,為了獲得更深的頻譜共振波谷並擴大感測區域,同心雙環共振器因而被提出。為了更進一步提升感測區域,並提高感測之靈敏度,我們再增加一個同心內環於雙環結構內,形成三環共振器。在本論文中,我們推導出了多環結構的功率轉換方程式,並且利用三維有限時域差分法模擬三環共振器之共振特性。我們探討了環之半徑對傳輸頻譜的影響,並討論雙環與三環共振器之共振頻譜變化情形。我們也模擬了三環共振器在折射率感測上的特性,此元件對待測物折射率的靈敏度可以達到12.85 nm/RIU,證實三環共振器的確較雙環共振器可以得到更深的共振波谷與較高的感測靈敏度。而適當的擴大狹縫寬度也可以有效地增加感測區域,因而提高感測靈敏度。此外,我們也對輸入光之偏振方向與待測材料之吸光特性對共振頻譜之影響進行討論。
Abstract
SOI-based micro-ring resonators can be ultra-compact and highly sensitive for sensing applications. In order to obtain deeper notches and enlarge the detection area, the concentric double-ring resonators have been proposed. To further increase the sensing area and promote the sensing sensitivity, we add one more inner ring into the double-ring structure to form the triple-ring resonator.
In this thesis, we have derived the transfer functions of the multi-ring structures and calculated the resonance properties of the triple-ring resonators by using the 3-D FDTD method. We have investigated the effects of the ring radius on the transmission spectra and discussed the variations of spectral response between the double-ring and triple-ring resonators. We also demonstrate the applications of the triple-ring resonator as the refractive index sensors. The triple-ring resonator can obtain deeper dips and higher detection sensitivity of 12.85 nm/RIU. Enlarging the gap can increase the sensing area and is shown to be able to promote the sensing sensitivity. Besides, the influences of the light polarization and the optical absorption on the spectral responses have been discussed as well.
目次 Table of Contents
1 Introduction 1
1.1 Optical Waveguides ……………………………………………………1
1.2 Micro-Ring Resonators ………………………………………………2
1.3 Motivation …………………………………………………………………3
1.4 Chapter Outline …………………………………………………………4

2 Numerical Methods 12
2.1 Overview …………………………………………………………………12
2.2 Finite-Difference Time-Domain Method ………………………………12

3 Theory of Ring Resonators 19
3.1 Overview …………………………………………………………………19
3.2 Sensing Principles ………………………………………………………19
3.3 Theory of Light Coupling ………………………………………………21
3.3.1 Single-ring Resonator ………………………………………………21
3.3.2 Double-ring Resonator ………………………………………………25

4 Resonance Properties of Triple-Ring Resonators 37
4.1 Overview …………………………………………………………………37
4.2 Device Layout ……………………………………………………………37
4.3 Resonance Properties …………………………………………………38
4.4 Effects of Inner-Ring Radius ………………………………………39

5 Sensing Applications of Triple-Ring Resonators 51
5.1 Overview ……………………………………………………………51
5.2 Effects of Gap Index ………………………………………………………51
5.3 Enlargement of Sensing Area …………………………………………54
5.4 Polarizations of Light …………………………………………………54
5.5 Optical Absorption ………………………………………………………56

6 Conclusions 68
Bibliography 70
參考文獻 References
[1] Baehr-Jones, T., M. Hochberg, C. Walker, and A. Scherer, “High-Q ring
resonators in thin silicon-on-insulator,” Appl. Phys. Lett., vol. 85, pp. 3346–3347,
2004.
[2] Bell, P. M., J. B. Pendry, L. M. Moreno, and A. J. Ward, “A program for
calculating photonic band structures and transmission coefficients of complex
structures,” Comput. Phys. Commun., vol. 85, pp. 306–322, 1995.
[3] Berenger, J. P., “A perfectly matched layer for the absorption of electromagnetic
waves,” J. Comput. Phys., vol. 114, pp. 185–200, 1994.
[4] Chao, C. Y. and L. J. Guo, “Thermal-flow technique for reducing surface
roughness and controlling gap size in polymer microring resonators,” Appl. Phys.
Lett., vol. 84, pp. 2479-2481, 2004.
[5] Densmore, A., D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delage,
B. Lamontagne, J. H. Schmid, and E. Post, “A silicon-on-insulator photonic wire
based evanescent field sensor,” IEEE Photon. Technol. Lett., vol. 18, pp.
2520–2522, 2006.
[6] Fan, X., I. White, H. Zhu, J. D. Suter, and H. Oveys, “Overview of novel
integrated optical ring resonator bio/chemical sensors,” PROC. SPIE, pp. 64520,2007.
[7] Fan, Xudong, Advanced Photonic Structures for Biological and Chemical
Detection. New York: Springer, 2009.
[8] Geuzebroek, D. H., E. J. Klein, H. Kelderman, F. S. Tan, D. J. W. Klunder, and
A. Driessen, “Thermally tuneable, wide FSR switch based on micro-ring
resonators,” Proc. Symp. IEEE/LEOS Benelux, pp. 155–158, 2002.
[9] Guider, R., “Novel materials and optical waveguide systems for silicon
photonics,” M.S. Thesis, Department of Physics, University of Trento, Italy,
December 2009.
[10] Guo, L. J., C. Y. Chao, W. Fung, and J. Yang, “Biochemical sensors based on
polymer microring resonators,” Appl. Phys. Lett., vol. 83, pp.1527, 2003.
[11] Headley, W. R., G. T. Reed, S. Howe, A. Liu, and M. Paniccia,
“Polarization-independent optical racetrack resonators using rib waveguides on
silicon-on-insulator,” Appl. Phys. Lett., vol 85, pp. 5523–5525, 2004.
[12] Hsu, C. J., “Design of tunable y-shaped photonic crystal waveguides,” M.S.
Thesis, Department of Photonics, National Sun Yat-sen University, Taiwan, June
2009.
[13] Jurgens, T. G., A. Taflove, K. Umashankar, and T. G. Moore, “Finite-difference
time-domain modeling of curved surfaces,” IEEE Trans. Ant. and Propa., vol. 40,pp. 357–366, 1992.
[14] Kim, I. S., and W. J. R. Hoefer, “A local mesh refinement algorithm for the
time-domain finite-difference method using Maxwell’s curl equations,” IEEE
Trans. Microwave Theory Tech., vol. 38, pp. 812–815, 1990.
[15] Lee, H. S., B. H. O, and E. H. Lee, “Improved quality factor of a silicon
micro-ring resonator for WDM filter application,” IEEE International
Conference on Group IV Photonics, pp. 305, 2008.
[16] Leung, K. M., and Y. F. Liu, “Photon band structures: The plane-wave method,”
Phys. Rev. B, vol. 41, pp. 10188–10190, 1990.
[17] Little, B. E., J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E.
P. Ippen, L. C. Kimerling, and W. Greene, “Ultra-compact Si–SiO2 microring
resonator optical channel dropping filters,” IEEE Photon. Technol. Lett., vol. 10,
pp. 549–551, 1998.
[18] Li, X., Z. Zhang, S. Qin, M. Qiu, and Y. Su, “Label-free biosensor based on
silicon-on-insulator concentric micro-ring resonators,” in Proceedings of IEEE
Photonics Global Conference, 2008a.
[19] Li, X., Z. Zhang, S. Qin, M. Qiu, and Y. Su, “Ultra-compact parallel label-free
biosensors based on concentric micro-ring resonators in silicon-on-insulator,” in
Proceedings of the Asia Optical Fiber and Optoelectronic 2008 Exposition andConference, 2008b.
[20] Nakamura, H., T. Saiki, H. Kambe, and K. Sawada, “FDTD simulation of
tapered structure of near-field fiber probe,” Computer physics communications,
vol. 142, pp. 464–467, 2001.
[21] Nitkowski, A., A. Baeumner, and M. Lipson, “On-chip spectrophotometry for
bioanalysis using microring resonators,” Biomedical Optics Express, vol. 2, pp.
271–277, 2011.
[22] Nolting, H. P., and R. Marz, “Results of benchmark tests for different numerical
BPM algorithms,” J. Lightwave Technol., vol. 13, pp. 216–224, 1995.
[23] Rabiei, P., W. H. Steier, C. Zhang, and L. R. Dalton, “Polymer micro-ring filters
and modulators,” IEEE J. Lightwave Technol., vol. 20, pp. 1968–1975, 2002.
[24] Rsoft Design Group, “FullWAVE 3.0 Manual,” Ossining, NY, 1999.
[25] Sheen, D. M., M. A. Sami, D. A. Mohamed, and A. K. Jin, “Application of the
three-dimensional finite-difference time-domain method to the analysis of planar
microstrip circuits,” IEEE Trans. Microwave Theory Tech., vol.38, pp. 849–857,
1990.
[26] Su, B., C. Wang, Q. Kan, and H. Chen, “Compact silicon-on-insulator
dual-microring resonator optimized for sensing,” J. Lightwave Technol., vol. 29,
pp. 1535–1541, 2011.
[27] Taflove, A., and S. C. Hagness, Computational electrodynamics: the
finite-different time-domain method. Boston: Artech House, 2000.
[28] Vos, K. D., I. Bartolozzi, E. Schacht, P. Bienstman, and R. Baets,
“Silicon-on-Insulator microring resonator for sensitive and label-free
biosensing,” Opt. Express, vol. 15, pp. 7610–7615, 2007.
[29] Xu, D. X., A. Densmore, P. Waldron, S. Janz, J. Lapointe, A. Delage, G.
Lopinski, T. Mischki, P. Cheben, and J. H. Schmid, “Sensitive and compact
silicon wire evanescent field surface sensors,” IEEE LEOS Annual Meet., TuQ2,
Orlando, 2007.
[30] Xu, F., Y. Zhang, W. Hong, K. Wu, and T. J. Cui, “Finite-difference
frequency-domain algorithm for modeling guided-wave properties of substrate
integrated waveguide,” IEEE Trans. Microwave Theory Tech., vol. 51, 2003.
[31] Xu, Q., B. Schmidt, J. Shakya, and M. Lipson, “Cascaded silicon micro-ring
modulators for WDM optical interconnection,” Opt. Express, vol. 14, pp.
9431–9435, 2006.
[32] Yalcin, A., K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki,
B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes- Washburn, M. S. Unlu,
and B. B. Goldberg, “Optical sensing of biomolecules using microring
resonators,” IEEE J. Sel. Topics Quantum Electron., vol. 12, pp. 148–154, 2006.
[33] Yariv, A., “Universal relations for coupling of optical power between
microresonators and dielectric waveguides,” Electron. Lett., vol. 36, pp. 321–322,
2000.
[34] Yebo, N. A., D. Taillaert, J. Roels, D. Lahem, M. Debliquy, D. Van Thourhout,
and R. Baets, “Silicon-on-insulator (SOI) ring resonator-based integrated optical
hydrogen sensor,” IEEE Photon. Technol. Lett., vol. 21, pp. 960–962, 2009.
[35] Yee, K. S ., “Numerical solution of initial boundary value problems involving
Maxwell’s equations in isotropic media,” IEEE Trans. Antennas Propagat., vol.
AP-14, pp. 302–307, 1966.
[36] Zhang, L., Y. Yue, Y. Xiao-Li, R. G. Beausoleil, and A. E. Willner, “Chromatic
dispersion in tightly curved silicon waveguides and ring resonators,” in
Conference on Lasers and Electro-Optics, 2010.
[37] Zhang, Z., M. Dainese, L. Wosinski, and M. Qiu, “Resonance splitting and
enhanced notch depth in SOI ring resonators with mutual mode coupling,” Opt.
Express, vol. 16, pp. 4621–4630, 2008.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 52.54.103.76
論文開放下載的時間是 校外不公開

Your IP address is 52.54.103.76
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code