Responsive image
博碩士論文 etd-0713111-131149 詳細資訊
Title page for etd-0713111-131149
論文名稱
Title
探討p21-activated protein kinase 1在黏液肉瘤細胞的生物角色
Studies on the biological roles of p21-activated protein kinase 1 in myxoid sarcoma cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
53
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-24
繳交日期
Date of Submission
2011-07-13
關鍵字
Keywords
黏液肉瘤、侵犯性、遷移、p21 protein (Cdc42/Rac)-activated kinase 1、增生、轉型
invasion, myxoid sarcoma, p21 protein (Cdc42/Rac)-activated kinase 1, migration
統計
Statistics
本論文已被瀏覽 5731 次,被下載 0
The thesis/dissertation has been browsed 5731 times, has been downloaded 0 times.
中文摘要
黏液纖維肉瘤是常見具黏液型態的軟組織肉瘤。臨床上,黏液纖維肉瘤復發時常會增加腫瘤惡化等級,最終導致轉移。而現今轉移性黏液纖維肉瘤難以治療,是構成肉瘤相關死亡的主要原因。根據本研究團隊先前應用免疫組織化學染色法分析黏液軟組織肉瘤檢體結果,發現p21 protein (Cdc42/Rac)-activated kinase 1(PAK1)蛋白質有高度表現的情形。PAK1為絲胺酸/蘇胺酸激酶(serine/threonine kinase),可受不同的訊息傳遞路徑刺激,調控細胞存活、進行有絲分裂與細胞骨架重組等。首先,我們測試不同的黏液肉瘤細胞株,包含OH931、NMFH1和NMFH2之PAK1基因內生性mRNA和蛋白質表現,發現PAK1高度表現於OH931和NMFH1;而低表現於NMFH2細胞株。我們更進一步利用wound healing與matrigel transwell assay發現,將帶有wild-type PAK1基因或PAK1 T423E突變株的質體,轉殖入NMFH2細胞可促進細胞遷移和侵犯能力。相反的,以short hairpin RNA干擾技術抑制PAK1基因表現,則會抑制NMFH1細胞遷移速率和侵犯能力。此外,5-bromo-2-deoxyuridine assay和colony formation assay發現,不管送入外源性PAK1表現質體使其高度表現或抑制PAK1基因皆會影響細胞的生長與轉型情形。令人意外地,以hepatocyte growth factor處理NMFH2細胞,誘導PAK1 (Thr212) 磷酸化並使其進入細胞核。總結以上,PAK1基因在黏液肉瘤中扮演著致癌的角色。
Abstract
The common type of myxoid soft tissue sarcomas is myxofibrosarcoma. Clinically, increased tumor grading and staging are frequently observed in myxofibrosarcomas after relentless local recurrences, which may eventually lead to metastatic diseases. However, metastatic myxofibrosarcomas are often refractory to current treatment strategies and constitute the primary cause of sarcoma-related death. Immunohistochemistry staining was applied to analyze myxoid tumors of soft tissue in our previous studies, and p21 protein (Cdc42/Rac)-activated kinase 1 (PAK1) was identified to be significantly upregulated in myxoid soft tissue sarcomas. The PAK1 is a pivotal serine/threonine kinase, which integrates stimuli from various signaling pathways to regulate cell survival, mitosis and cytoskeletal remodeling, etc. We first examined the endogenous PAK1 mRNA and total PAK1 protein levels in various myxoid sarcoma cell lines, including OH931, NMFH1 and NMFH2. This initial screening detected that upregulated PAK1 expression in OH931 and NMFH1, whereas downregulated PAK1 in NMFH2 cells. By wound healing and matrigel transwell assay, we further found that transfection of the expression plasmid carrying wild-type PAK1 gene or PAK1 T423E mutant promoted cell migration and invasion abilities in NMFH2 cells. On the other hand, knockdown of the PAK1 gene by short hairpin RNA interference inhibited the migration rate and invasion ability in NMFH1 cells. By 5-bromo-2-deoxyuridine assay and colony formation assay, we found that either exogenous expression of PAK1 protein or knockdown of PAK1 gene affected cell proliferation and transformation. Interestingly, immunofluorescence demonstrated that treatment with hepatocyte growth factor induced phosphorylation of PAK1 (Thr212) and promoted its nuclear import in NMFH2 cells. In summary, PAK1 plays oncogenic roles in myxoid sarcoma carcinogenesis.
目次 Table of Contents
論文審定書 i
誌謝ii
摘要iii
Abstract iv
英文縮寫表v
壹、緒論(Introduction) 1
貳、實驗材料及方法(Materials and methods) 6
参、結果(Results) 20
肆、討論(Discussion) 34
伍、參考文獻(References) 36
附錄42
參考文獻 References
Adam L, Vadlamudi R, Mandal M, Chernoff J, Kumar R (2000). Regulation of microfilament reorganization and invasiveness of breast cancer cells by kinase dead p21-activated kinase-1. J Biol Chem 275: 12041-50.

Arias-Romero LE, Chernoff J (2008). A tale of two Paks. Biol Cell 100: 97-108.

Ariizumi T, Ogose A, Kawashima H, Hotta T, Umezu H, Endo N (2009). Multinucleation followed by an acytokinetic cell division in myxofibrosarcoma with giant cell proliferation. J Exp Clin Cancer Res 28: 44.

Bagrodia S, Cerione RA (1999). Pak to the future. Trends Cell Biol 9: 350-5.

Bekri S, Adelaide J, Merscher S, Grosgeorge J, Caroli-Bosc F, Perucca-Lostanlen D et al (1997). Detailed map of a region commonly amplified at 11q13-->q14 in human breast carcinoma. Cytogenet Cell Genet 79: 125-31.

Bokoch GM (2003). Biology of the p21-activated kinases. Annu Rev Biochem 72: 743-81.

Bowers DC, Fan S, Walter KA, Abounader R, Williams JA, Rosen EM et al (2000). Scatter factor/hepatocyte growth factor protects against cytotoxic death in human glioblastoma via phosphatidylinositol 3-kinase- and AKT-dependent pathways. Cancer Res 60: 4277-83.

Carter JH, Douglass LE, Deddens JA, Colligan BM, Bhatt TR, Pemberton JO et al (2004). Pak-1 expression increases with progression of colorectal carcinomas to metastasis. Clin Cancer Res 10: 3448-56.

Chen RH, Sarnecki C, Blenis J (1992). Nuclear localization and regulation of erk- and rsk-encoded protein kinases. Mol Cell Biol 12: 915-27.

Ching YP, Leong VY, Lee MF, Xu HT, Jin DY, Ng IO (2007). P21-activated protein kinase is overexpressed in hepatocellular carcinoma and enhances cancer metastasis involving c-Jun NH2-terminal kinase activation and paxillin phosphorylation. Cancer Res 67: 3601-8.

Chong C, Tan L, Lim L, Manser E (2001). The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J Biol Chem 276: 17347-53.

Deacon SW, Beeser A, Fukui JA, Rennefahrt UE, Myers C, Chernoff J et al (2008). An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem Biol 15: 322-31.

Fan S, Gao M, Meng Q, Laterra JJ, Symons MH, Coniglio S et al (2005). Role of NF-kappaB signaling in hepatocyte growth factor/scatter factor-mediated cell protection. Oncogene 24: 1749-66.

Fan S, Ma YX, Gao M, Yuan RQ, Meng Q, Goldberg ID et al (2001). The multisubstrate adapter Gab1 regulates hepatocyte growth factor (scatter factor)-c-Met signaling for cell survival and DNA repair. Mol Cell Biol 21: 4968-84.

Fan S, Ma YX, Wang JA, Yuan RQ, Meng Q, Cao Y et al (2000). The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3' kinase. Oncogene 19: 2212-23.

Frost JA, Swantek JL, Stippec S, Yin MJ, Gaynor R, Cobb MH (2000). Stimulation of NFkappa B activity by multiple signaling pathways requires PAK1. J Biol Chem 275: 19693-9.

Gomes DA, Rodrigues MA, Leite MF, Gomez MV, Varnai P, Balla T et al (2008). c-Met must translocate to the nucleus to initiate calcium signals. J Biol Chem 283: 4344-51.

Gonzalez FA, Seth A, Raden DL, Bowman DS, Fay FS, Davis RJ (1993). Serum-induced translocation of mitogen-activated protein kinase to the cell surface ruffling membrane and the nucleus. J Cell Biol 122: 1089-101.

Graadt van Roggen JF, Hogendoorn PC, Fletcher CD (1999). Myxoid tumours of soft tissue. Histopathology 35: 291-312.

Hatano H, Tokunaga K, Ogose A, Imaizumi S, Hayami T, Yamagiwa H et al (1999). Origin of histiocyte-like cells and multinucleated giant cells in malignant fibrous histiocytoma: neoplastic or reactive? Pathol Int 49: 14-22.

Hofmann C, Shepelev M, Chernoff J (2004). The genetics of Pak. J Cell Sci 117: 4343-54.

Howe AK, Juliano RL (2000). Regulation of anchorage-dependent signal transduction by protein kinase A and p21-activated kinase. Nat Cell Biol 2: 593-600.

Kawashima H, Ogose A, Gu W, Nishio J, Kudo N, Kondo N et al (2005). Establishment and characterization of a novel myxofibrosarcoma cell line. Cancer Genet Cytogenet 161: 28-35.

King CC, Gardiner EM, Zenke FT, Bohl BP, Newton AC, Hemmings BA et al (2000). p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J Biol Chem 275: 41201-9.

Krause AK, Hinrichs SH, Orndal C, DeBoer J, Neff JR, Bridge JA (1997). Characterization of a human myxoid malignant fibrous histiocytoma cell line, OH931. Cancer Genet Cytogenet 94: 138-43.

Kumar R, Gururaj AE, Barnes CJ (2006). p21-activated kinases in cancer. Nat Rev Cancer 6: 459-71.

Lenormand P, Sardet C, Pages G, L'Allemain G, Brunet A, Pouyssegur J (1993). Growth factors induce nuclear translocation of MAP kinases (p42mapk and p44mapk) but not of their activator MAP kinase kinase (p45mapkk) in fibroblasts. J Cell Biol 122: 1079-88.

Li F, Adam L, Vadlamudi RK, Zhou H, Sen S, Chernoff J et al (2002). p21-activated kinase 1 interacts with and phosphorylates histone H3 in breast cancer cells. EMBO Rep 3: 767-73.

Lightcap CM, Kari G, Arias-Romero LE, Chernoff J, Rodeck U, Williams JC (2009). Interaction with LC8 is required for Pak1 nuclear import and is indispensable for zebrafish development. PLoS One 4: e6025.

Lin SY, Makino K, Xia W, Matin A, Wen Y, Kwong KY et al (2001). Nuclear localization of EGF receptor and its potential new role as a transcription factor. Nat Cell Biol 3: 802-8.

Liu F, Li X, Wang C, Cai X, Du Z, Xu H et al (2009). Downregulation of p21-activated kinase-1 inhibits the growth of gastric cancer cells involving cyclin B1. Int J Cancer 125: 2511-9.

Ma PC, Maulik G, Christensen J, Salgia R (2003). c-Met: structure, functions and potential for therapeutic inhibition. Cancer Metastasis Rev 22: 309-25.

Manser E, Huang HY, Loo TH, Chen XQ, Dong JM, Leung T et al (1997). Expression of constitutively active alpha-PAK reveals effects of the kinase on actin and focal complexes. Mol Cell Biol 17: 1129-43.

Manser E, Loo TH, Koh CG, Zhao ZS, Chen XQ, Tan L et al (1998). PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol Cell 1: 183-92.

Martin KC, Michael D, Rose JC, Barad M, Casadio A, Zhu H et al (1997). MAP kinase translocates into the nucleus of the presynaptic cell and is required for long-term facilitation in Aplysia. Neuron 18: 899-912.

Maulik G, Shrikhande A, Kijima T, Ma PC, Morrison PT, Salgia R (2002). Role of the hepatocyte growth factor receptor, c-Met, in oncogenesis and potential for therapeutic inhibition. Cytokine Growth Factor Rev 13: 41-59.

Miura H, Nishimura K, Tsujimura A, Matsumiya K, Matsumoto K, Nakamura T et al (2001). Effects of hepatocyte growth factor on E-cadherin-mediated cell-cell adhesion in DU145 prostate cancer cells. Urology 58: 1064-9.

Mohamed AJ, Vargas L, Nore BF, Backesjo CM, Christensson B, Smith CI (2000). Nucleocytoplasmic shuttling of Bruton's tyrosine kinase. J Biol Chem 275: 40614-9.

Nayal A, Webb DJ, Brown CM, Schaefer EM, Vicente-Manzanares M, Horwitz AR (2006). Paxillin phosphorylation at Ser273 localizes a GIT1-PIX-PAK complex and regulates adhesion and protrusion dynamics. J Cell Biol 173: 587-9.

Nishimura K, Kitamura M, Takada S, Nonomura N, Tsujimura A, Matsumiya K et al (1998). Regulation of invasive potential of human prostate cancer cell lines by hepatocyte growth factor. Int J Urol 5: 276-81.

Parrini MC, Lei M, Harrison SC, Mayer BJ (2002). Pak1 kinase homodimers are autoinhibited in trans and dissociated upon activation by Cdc42 and Rac1. Mol Cell 9: 73-83.

Parrini MC, Matsuda M, de Gunzburg J (2005). Spatiotemporal regulation of the Pak1 kinase. Biochem Soc Trans 33: 646-8.

Rider L, Shatrova A, Feener EP, Webb L, Diakonova M (2007). JAK2 tyrosine kinase phosphorylates PAK1 and regulates PAK1 activity and functions. J Biol Chem 282: 30985-96.

Schurmann A, Mooney AF, Sanders LC, Sells MA, Wang HG, Reed JC et al (2000). p21-activated kinase 1 phosphorylates the death agonist bad and protects cells from apoptosis. Mol Cell Biol 20: 453-61.

Sells MA, Boyd JT, Chernoff J (1999). p21-activated kinase 1 (Pak1) regulates cell motility in mammalian fibroblasts. J Cell Biol 145: 837-49.

Sells MA, Pfaff A, Chernoff J (2000). Temporal and spatial distribution of activated Pak1 in fibroblasts. J Cell Biol 151: 1449-58.

Singh RR, Song C, Yang Z, Kumar R (2005). Nuclear localization and chromatin targets of p21-activated kinase 1. J Biol Chem 280: 18130-7.

Stoker M, Perryman M (1985). An epithelial scatter factor released by embryo fibroblasts. J Cell Sci 77: 209-23.

Tang Y, Chen Z, Ambrose D, Liu J, Gibbs JB, Chernoff J et al (1997). Kinase-deficient Pak1 mutants inhibit Ras transformation of Rat-1 fibroblasts. Mol Cell Biol 17: 4454-64.

Vadlamudi RK, Adam L, Wang RA, Mandal M, Nguyen D, Sahin A et al (2000). Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J Biol Chem 275: 36238-44.

Wang RA, Zhang H, Balasenthil S, Medina D, Kumar R (2006). PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 25: 2931-6.

Yang F, Li X, Sharma M, Zarnegar M, Lim B, Sun Z (2001). Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J Biol Chem 276: 15345-53.

Zhang YW, Vande Woude GF (2003). HGF/SF-met signaling in the control of branching morphogenesis and invasion. J Cell Biochem 88: 408-17.

Zhao ZS, Manser E (2005). PAK and other Rho-associated kinases--effectors with surprisingly diverse mechanisms of regulation. Biochem J 386: 201-14.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.151.106
論文開放下載的時間是 校外不公開

Your IP address is 3.144.151.106
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code