Responsive image
博碩士論文 etd-0713111-171122 詳細資訊
Title page for etd-0713111-171122
論文名稱
Title
鎢氧化物薄膜之電阻式記憶體製作與研究
Fabrication and investigate the physical model with tungsten-based oxide resistance random access memory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
154
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-03
繳交日期
Date of Submission
2011-07-13
關鍵字
Keywords
非揮發性記憶體、電阻切換特性、鎢矽氧化物、雙層結構、氧化還原反應、鎢氧化物
tungsten oxide (WOx), Redox reaction, tungsten silicide (WSi), bilayer, Resistance switching, Nonvolatile memory
統計
Statistics
本論文已被瀏覽 5649 次,被下載 0
The thesis/dissertation has been browsed 5649 times, has been downloaded 0 times.
中文摘要
最近幾年來,次世代非揮發性記憶體的發展備受關注,由於快閃記憶體在微縮尺寸的過程中,遇到物理理論的瓶頸,所以次世代非揮發性記憶體的研究與開發正蓬勃地展開。其中,又以電阻式非揮發性記憶體元件具有結構簡單、耗損能量低、操作電壓低、製作密度高、操作速度快、耐久度高、儲存時間長和非破壞性存取等優點,使其成為取代快閃記憶體的大熱門。
在本研究中,將焦點著重於以金屬鎢的相關氧化物製作成具有電阻式記憶體特性的元件。由於,金屬鎢已經廣泛應用在CMOS 的製程中,所以它在CMOS 製程上有相當好的相容性。第一部分的實驗,主要是用氧化鎢當成電阻式記憶體元件的轉換特性層,我們也成功的製作出具轉態特性的元件。然而,它的元件特性卻極不穩定,也就是說高阻態跟低阻態的不穩定性。再經過操作100 次後,元件的記憶窗口明顯的縮小了一個數量級,這樣不穩定的元件是不能大量生產的。與鎢氧化物相比,我們就將以鎢矽氧化物當做電阻式記憶體元件的轉態特性層,當然也成功的製作出具轉態特性的元件。從實驗結果來看,再經過100 次的操作後,它的元件仍保持相當好的記憶特性,且經過AC 模式的十萬次操作後,並在高溫下可以持續保有其記憶特性。並且藉由材料分析的方法來分析薄膜成分、建立機制。
第二部分,更進一步想要藉由控制金屬鎢在薄膜中的含量,使得金屬絲的產生跟斷裂可以選擇的路徑更少去得到穩定的操作特性;另一方向想要藉由雙層結構中,氮原子的孤電子對來侷限氧離子的移動,使得RRAM 的切換特性可以得到更有效的改善,並在可靠度的測試上達到10000000 次的切換。兩者在高溫的穩定性都可以維持得很好。
在第三部分的實驗,最後我們藉由I-V 曲線來探討其電流機制,並在高阻態的高電場部分發現了不對稱的電流機制,並藉此提出了一個尖端電場的產生,使得元件在正負偏壓下的高電場有不同的載子傳輸機制。另外,結合示波器跟脈衝產生器去設計出一個等效電路,並且進行變溫量測。實驗結果顯示,RRAM 在轉換的過程中是需要一個臨界電壓跟能量。變溫的結果發現,低溫的時候氧離子的移動是跟電場有關;在高溫之下則是與氧離子的熱擴散有關。
Abstract
In recent years, the conventional Flash memory with floating structure is expected to reach physical limits as devices scaling down in near future. In order to overcome this problem, alternative memory technologies have been widely investigated. And the
resistance random access memory (RRAM) has attracted extensive attention for the application in next generation nonvolatile memory, due to the excellent memory property including lower consumption of energy, lower operating voltage, higher density, fast operating speed, simple structure, higher endurance, retention and process compatibility with CMOS.
In this study, the tungsten-based oxide is chosen as RRAM switching layer because the tungsten is compatible with the present complementary metal oxide semiconductor (CMOS) process. The Pt/WOX/TiN structure device cells had the resistance switching property successfully. However, the experiment result revealed the inferior resistance
switching property. The resistance switching characteristic of the WOX thin film is extremely unstable, it is impossible to become the products. Compared with WOX, the resistance switching property of WSiOX RRAM device is improved substantially such as stability of resistance states and reliability of device.
In second parts, we purposed two methods to enhance the device switching characteristic, including controlling the filament formation/ interruption in the W doped SiOX layer and restricting oxygen movement in the WSiON layer.
Finally, the transport mechanisms of carrier is analyzed and researched from the current-voltage (I-V) switching characteristic of the device. A designed circuit was used in this study to accurately observe the resistance switching process with a pulse generator and oscilloscope, which reveals that the switching process is related to both time and voltage. The oxygen movement will drift in the low temperature due to the electrical field and restricted the crystal lattice vibration. But, it will diffuse through thermal dynamics in the high temperature.
目次 Table of Contents
Contents
Acknowledgement………...................................................ii
Abstract (Chinese) ……………………………………………………………....iii
Abstract (English) …………………………………. v
Contents…………………………………………………...vii
Figure captions……….........................................................x
Table captions……...........................................................xvii
Chapter1 Introduction
1-1.The evolution of memory 1
1-2.Motivation 2
Chapter2 Literature
2-1.The introduction of memory 3
2-1-1.MRAM (Magnetic RAM) 4
2-1-2.FeRAM (Ferroelectric RAM) 6
2-1-3.PCRAM (Phase Change RAM) 7
2-1-4.RRAM (Resistance RAM) 8
2-2.The materials of Resistance RAM 9
2-2-1.Perovskite 9
2-2-1-1.Pr0.7Ca0.3MnO3 10
2-2-1-2.SrTiO3 and SrZrO3 11
2-2-2.Transition metal oxides 12
2-2-3.Organic materials 13
2-3.The switching mechanism of Resistance RAM 14
2-3-1.Filamentary model 14
2-3-1-1.Joule heating effect 15
2-3-1-2.Redox reaction with cation migration 16
2-3-1-3.Redox reaction with anion migration 17
2-3-2.Modified Schottky barrier model 18
2-4.The mechanism of current conduction 19
2-4-1.Ohmic conduction 20
2-4-2.Schottky emission 20
2-4-3.Poole-Frenkel emission 21
2-4-4.Tunneling conduction 22
2-4-5.Space charge limited current 22
2-5.Material Analyses 23
2-5-1.X-ray Photoelectron Spectroscopy (XPS) 23
2-5-2.Fourier Transform Infrared Spectroscopy (FTIR) 24
Chapter3 Resistance RAM characteristics of WOX and WSiOX
3-1.Results for Pt/WOX/TiN 39
3-1-1.Experimental procedures 39
3-1-2.Basic characteristic of WOX 40
3-2.Material Analyze for Pt/WOX/TiN 41
3-2-1.Fourier Transform Infrared Spectroscopy (FTIR) 41
3-2-2.X-ray Photoelectron Spectroscopy (XPS) 42
3-3.Results for Pt/WSiOX/TiN 43
3-3-1.Experimental procedures 43
3-3-2.Basic characteristic of WSiOX 44
3-3-3.Endurance and retention 45
3-4.Material Analyze for Pt/WSiOX/TiN 47
3-4-1.Fourier Transform Infrared Spectroscopy (FTIR)
47
3-4-2.X-ray Photoelectron Spectroscopy (XPS) 48
3-5.Discussion 49
Chapter4 Resistance RAM characteristics of W:SiOX and WSiON/WSiO double layer films
4-1.Results for Pt/W:SiOX/TiN 67
4-1-1.Experimental procedures 67
4-1-2.Basic characteristic of W:SiOX 68
4-1-3.Endurance and retention 69
4-2.Material Analyze for Pt/W:SiOX/TiN 71
4-2-1.Fourier Transform Infrared Spectroscopy (FTIR) 71
4-2-2.X-ray Photoelectron Spectroscopy (XPS) 72
4-3.Results for Pt/WSiO/WSiON/TiN (bilayer structure) 4-3-1.Experimental procedures 74
4-3-2.Basic characteristic of bilayer structure 75
4-3-3.Endurance and retention 76
4-4.Material Analyses 78
4-4-1.Fourier Transform Infrared Spectroscopy (FTIR) 78
4-4-2.X-ray Photoelectron Spectroscopy (XPS) 79
4-5.Discussion 80
Chapter5 Research of Resistance RAM mechanism
5-1. Analyses of carrier transport mechanism 100
5-2. Discusion for carrier transport mechanism 101
5-3. Energy model of Resistance Switching 102
5-4. Discusion for Energy model of Resistance Switching 105
Chapter6 Conclusion 124
References 129
參考文獻 References
[1] Gerhard Muller, Thomas Happ, Michael Kund, Gill Yong Lee, Nicolas Nagel, and Recai Sezi, “ Status and Outlook of Emerging Nonvolatile Memory
Technologies”,IEEE, 2004
[2] 葉林秀、李佳謀、徐明豐、吳德和,“磁阻式隨機存取記憶體技術的發展—現在與未來”,物理雙月刊 廿六期四卷,2004 年
[3] 簡昭欣、呂正傑、陳志遠、張茂男、許世祿、趙天生,“先進記憶體簡介,國研科技創刊號,2004 年
[4] R.E. Jones, Jr, P.D. Maniar, R. Moazzami, P. Zurcher, J.Z. Witowski, Y.T. Lii b, P. Chu and S.J. Gillespie, “ Ferroelectric non-volatile memories for low-voltage, low-power applications”, Thin Solid Films, 1995
[7] http://theeestory.com/topics/4141
[8] A.Asamitsu, Y.Tomioka, H.Kuwahara, Y. Tokura, “ Current switching of resistive states in magnetoresistive manganites”, Nature (London), 388, 50 (1997).
[9] A. Sawa, T. Fujii, M. Kawasaki, and Y. Tokurad, “Hysteretic current-voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface”,Appl. Phys. Lett., Vol. 85, No. 18, 2004
[10] Song-Lin Li, Jian-Lei Gang, Jie Li, Hai-Feng Chu and Dong-Ning Zheng, Reproducible low-voltage resistiveswitching in a low-initial- resistance Pr0.7Ca0.3MnO3 junction”, J. Phys. D: Appl. Phys. 41 (2008) 185409 (5pp)
[11] X. Chen, N. J. Wu et al., “Direct resistance profile for an electrical pulse induced resistance change device”, Applied Physics Letters, 87(23), 2005
[12] Y. Watanabe,a) J. G. Bednorz,b) A. Bietsch, Ch. Gerber, D. Widmer, and A. Beckc),“Current-driven insulator–conductor transition and nonvolatile memory in chromium-doped SrTiO3 single crystals”, Appl. Phys. Lett., Vol. 78, No. 23, 4 June 2001
[13] Dooho Choi, Dongsoo Lee, Hyunjun Sim, Man Chang, and Hyunsang Hwang ,“Reversible resistive switching of SrTiOx thin films for nonvolatile memory
applications”, Appl. Phys. Lett. 88, 082904 2006
[14] A. Beck, J. G. Bednorz, Ch. Gerber, C. Rossel,a) and D. Widmer,” Reproducible switching effect in thin oxide films for memory applications”, Appl. Phys. Lett., Vol. 77, No. 1, 3 July 2000
[15] S. Seo, M. J. Lee et al.,”Reproducible resistance switching in polycrystalline NiO films”, Applied Physics Letters, 85(23), 2004
[16] Wen-Yuan Chang, Yen-Chao Lai,” Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications”, Appl. Phys. Lett. 92, 022110, 2008
[17] Weihua Guan, Shibing Long,” Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide”, Appl. Phys. Lett. 91, 062111, 2007
[18] Chang-Po Hsiung,a Jon-Yiew Gan,” Resistance Switching Characteristics of TiO2 Thin Films Prepared with Reactive Sputtering”, Electrochemical and Solid-State Letters, 12 (7) G31-G33 (2009)
[19] M.Y. Chan, T. Zhang,” Resistive switching effects of HfO2 high-k dielectric”, Microelectronic Engineering 85 (2008) 2420–2424
[20] L. P. Ma, J. Liu et al.,” Organic electrical bistable devices and rewritable memory cells”, Applied Physics Letters, 80(16), 2002
[21] J. Y. Son, Y. H. Shina,” Direct observation of conducting filaments on resistive switching of NiO thin films”, Appl. Phys. Lett, 92, 222106 (2008)
[22] S. H. Chang, S. C. Chae, S. B. Lee, C. Liu, T. W. Noh,1 J. S. Lee,B. Kahng, J. H. Jang, M. Y. Kim,3 D.-W. Kim, C. U. Jung,” Effects of heat dissipation on unipolar resistance switching in Pt/NiO/Pt capacitors”, Appl. Phys. Lett. 92, 183507 (2008)
[23] Yu Chao Yang, Feng Pan, Qi Liu, Ming Liu, and Fei Zeng,” Fully Room-Temperature-Fabricated Nonvolatile Resistive Memory for Ultrafast and
High-Density Memory Application”, Nano Lett., Vol. 9, No. 4, 2009
[24] Kou-Chen Liu, Wen-Hsien Tzeng, Kow-Ming Chang, Yi-Chun Chan, Chun-Chih Kuo, Chun-Wen Cheng,” The resistive switching characteristics of a Ti/Gd2O3/Pt RRAM device”, Microelectronics Reliability 50 (2010) 670–673
[25] 施敏、伍國珏,“半導體元件物理學”,2008年
[26] Julien Polleux, Nicola Pinna, Markus Antonietti, and Markus Niederberger,” Growth and Assembly of Crystalline Tungsten Oxide Nanostructures Assisted by Bioligation”, J. AM. CHEM. SOC. 2005, 127, 15595-15601
[27] Y. DJAOUED, P.V. ASHRIT AND S. BADILESCU, R. BRU‥ NING,” Synthesis and Characterization of Macroporous Tungsten Oxide Films for Electrochromic
Application”, Journal of Sol-Gel Science and Technology 28, 235–244, 2003
[28] N. Sharma, M. Deepa, P. Varshney, S.A. Agnihotry,” FTIR and absorption edge studies on tungsten oxide based precursor materials synthesized by sol–gel technique”, Journal of Non-Crystalline Solids 306 (2002) 129–137
[29] G. Leftheriotis*, S. Papaefthimiou, P. Yianoulis,” The effect of water on the electrochromic properties of WO3 films prepared by vacuum and chemical methods”, Solar Energy Materials & Solar Cells 83 (2004) 115–124
[30] Nilgiin Ozer,” Optical and electrochemical characteristics of sol-gel deposited tungsten oxide films: a comparison”, Thin Solid Films 304 (i997) 310-314
[31] M. Valigi, D. Gazzoli, I. Pettiti, G. Mattei, S. Colonna, S. De Rossi and G. Ferraris,” WOx /ZrO2 catalysts Part 1. Preparation, bulk and surface characterization”, Appl. Catal. A 231 (2002), p. 159
[32] J. Goschnick, M. Frietsch and T. Schneider,”Non-uniform SiO2 membranes produced by ion beam-assisted chemical vapor deposition to tune WO3 gas sensor microarrays”, Surf. Coat. Technol. 108/109 (1998), p. 292.
[33] George Leftheriotis, Spiros Papaefthimiou, Panayiotis Yianoulis,Angeliki Siokou, Dimitris Kefalas,” Structural and electrochemical properties of opaque sol–gel deposited WO3 layers”, Applied Surface Science 218 (2003) 275–280
[34] Yunho Baek and Kijung Yong,” Controlled Growth and Characterization of Tungsten Oxide Nanowires Using Thermal Evaporation of WO3 Powder”, J. Phys.
Chem. C 2007, 111, 1213-1218
[35] Francisco del Monte, Willa Larsen, and John D. Mackenzie,” Stabilization of Tetragonal ZrO2 in ZrO2-SiO2 Binary Oxides”, J. Am. Ceram. Soc., 83 [3] 628 –34 (2000)
[36] D. A. Neumayer and E. Cartier, ” Materials characterization of ZrO2–SiO2 and HfO2–SiO2 binary oxides deposited by chemical solution deposition”, J. Appl. Phys., Vol. 90, No. 4, 15 August 2001
[37] Cristina Martı’n, Pilar Malet, Gabriel Solana and Vicente Rives,” Structural Analysis of Silica-Supported Tungstates”, J. Phys. Chem. B 102, (1998) 2759-2768.
[38] G. Zukowska, J.R. Stevens, K.R. Jeffrey,” Anhydrous gel electrolytes doped with silicotungstic acid”, Electrochimica Acta 48 (2003) 2157 2164
[39] M.V. Landau, S.P. Varkey , M. Herskowitz, O. Regev , S. Pevzner ,T. Sen , Z. Luz,” Wetting stability of Si-MCM-41 mesoporous material in neutral, acidic and basic aqueous solutions”, Microporous and Mesoporous Materials 33 ( 1999) 149–163
[40] Plinio Innocenzi, Paolo Falcaro, David Grosso and Florence Babonneau,”Order-Disorder Transitions and Evolution of Silica Structure in Self-Assembled
Mesostructured Silica Films Studied through FTIR Spectroscopy”, J. Phys. Chem. B2003, 107, 4711-4717
[41] Ana R. Londergan, Guillermo Nuesca, Cindy Goldberg, Gregory Peterson, Alain E. Kaloyeros, Barry Arkles, and John J. Sullivan,” Interlayer Mediated Epitaxy of Cobalt Silicide on Silicon (100) from Low Temperature Chemical Vapor Deposition of Cobalt
Formation Mechanisms and Associated Properties”, Journal of The Electrochemical Society, 148 (1) C21-C27 (2001)
[42] Itaru Shibata, Toshikazu Nishide, and Toshinori Hasegawa,” Physical Properties and Chemical States of RF Sputter Deposited SiWOx Films”, J. Vac. Sci. Technol. A 14(4), Jul/Aug 1996
[43] M.R. Alexander, R.D. Short, F.R. Jones, W. Michaeli, C.J. Blomfield,” A study of HMDSOr/O2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: curve fitting of the Si 2p core level”, Applied Surface Science 137 1999 179–183
[44] Y. G. Shena, Y. W. Mai, D. R. McKenzie, Q. C. Zhang, W. D. McFall, and W. E. McBride,”Composition, residual stress, and structural properties of thin tungsten nitride films deposited by reactive magnetron sputtering”, J. Appl. Phys., Vol. 88, No. 3,
1 August 2000
[45] Masatoshi Nagai, Toshiji Suda, Katsuhiko Oshikawa, Naoya Hirano, Shinzo Omi,” CVD preparation of alumina-supported tungsten nitride and its activity for thiophene hydrodesulfurization”, Catalysis Today 50 (1999) 29-37
[46] E. Rogozhina, G. Belomoin, A. Smith, L. Abuhassan, N. Barry, O. Akcakir, P. V. Braun, and M. H. Nayfeh,”Si–N linkage in ultrabright, ultrasmall Si nanoparticles”, Appl. Phys. Lett., Vol. 78, No. 23, 4 June 2001
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.129.19.251
論文開放下載的時間是 校外不公開

Your IP address is 3.129.19.251
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code