Responsive image
博碩士論文 etd-0713111-223236 詳細資訊
Title page for etd-0713111-223236
論文名稱
Title
戶外大規模微藻養殖之可行性研究
The feasibility study on outdoor large scale microalgae culture
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
139
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-06-10
繳交日期
Date of Submission
2011-07-13
關鍵字
Keywords
戶外養殖、擬球藻、朗伯-比爾定律、光照強度、水溫
light intensity, water temperature, Lambert-Beer’s law, Outdoor photobioreactor culture, Nannochloropsis oculata
統計
Statistics
本論文已被瀏覽 5748 次,被下載 16
The thesis/dissertation has been browsed 5748 times, has been downloaded 16 times.
中文摘要
海洋型微藻Nannochloropsis oculata為油性微藻,富含油脂,萃取出體內油脂能做為生質柴油的來源。本研究針對戶外溫控型生化反應系統 (Outdoor Temperature Controllable Photobioreactor System, OTCPS)進行微藻養殖,期盼成功培養出高純度且具有一定規模之藻液,作為下一階段大規模開放式養殖的基礎。研究中利用西子灣近岸海水做為主要養殖水源,應用Lambert-Beer’s law推算水體下的光線強度,運用控溫水槽不同淹沒水深,控制光強消散情況,同時達到抑制溫度的劇變。
水體中的溫度變化可藉由熱能傳輸基本定理加以解釋,本研究藻液水體溫度變化主要是依據熱輻射能與一階傅立葉熱傳導過程之原理計算,經實驗數據比對後,證實本定理可準確模擬育成桶內藻液白天之溫度變化。
結果顯示冬季藻體之OTCPS成長率 (μ)達0.33 d-1,高出夏季的0.20 d-1;這樣結果也許意謂著高溫是一種抑制因子。此外,當藻類濃度變高時,藻類吸收光源因藻體相互遮蔽效應會略顯不足,而降低藻類之光合作用。總結,本研究在南台灣 (高雄)進行戶外養殖,實驗過程涵蓋夏、秋、冬等季節,研究結果證實本反應器在溫熱帶地區確實可行。
Abstract
Nannochloropsis oculata is one of promising oleaginous microalga, containing a plenty of fat which can be extracted and transformed into biodiesel. The purpose of this study is to develop a closed system, Outdoor Temperature Controllable Photobioreactor System (OTCPS), to cultivate the algae in pure and massive quantity. In this research, the seawater from Sizihwan is used as the cultivation liquid. Lambert-Beer’s Law is adopted to calculate the attenuation coefficient of light intensity in a water column. By adjusting the water depth, not only the light intensity but also the water temperature could be controlled at the optimal situation and thus avoids unfavorable temperature changing in harsh weather. Therefore to establish the relationship of light intensity and water temperature is critical for the success of growing microalgae in outdoor conditions.
The temperature variation of culture medium can be explained by the heat transfer theorem. In this study, the heat radiation mechanism and the first order of Fourier heat conductivity were adopted to simulate the liquid temperature change. The simulation results have shown good agreement with the filed data especially during daytime.
The experimental results reveal that the winter grow rate of Nannochloroposis oculata is 0.33 d-1 , while the summer growth rate is only 0.20 d-1 . This may imply that the high temperature is an inhibition to the growth of Nannochloroposis oculata. Besides when the cell density of microalgae is getting higher, each individual alga may create mutual shading effect and thus reduce the photosynthetic efficiency. In conclusion, the proposed photobioreactor has been successfully tested in summer, autumn, and winter at Kaohsiung, in the south of Taiwan. This indicates that this device can be broadly used in the subtropic zone
目次 Table of Contents
摘要 I
ABSTRACT II
目錄 IV
圖次 IX
表次 XIII
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 3
1.3 本文組織 4
第二章 文獻回顧 5
2.1 藻類之基本介紹 5
2.1.1 微藻類介紹 5
2.1.2 微生物的生長趨勢 8
一、遲滯期 (LAG PHASE) 9
二、對數期 (LOG OR EXPONENTIAL GROWTH PHASE) 9
三、穩定期 (STATIONARY PHASE) 9
四、死滅期 (DECLINE OR LOGARITHMIC DECLINE PHASE) 9
2.2 微藻類的生長條件 10
2.2.1 影響藻類生長的物理因子 10
2.2.1.1光源與強度 10
2.2.1.2溫度 12
2.2.2 影響藻類生長的化學因子 12
2.2.2.1 二氧化碳 12
2.2.2.2 營養鹽 13
2.2.2.3 PH值 14
2.2.2.4 鹽度 14
2.2.3影響藻類生長的生物因子 15
2.2.3.1 原生動物攝食 15
2.3 光合作用 16
2.4 微藻類的死亡 18
2.5 微藻類培養系統 19
2.5.1 開放式培養 22
2.5.2 密閉式培養 24
2.6 微藻類的收集 27
2.6.1 混凝劑與助凝劑 28
2.6.1.1 混凝劑 28
2.6.1.2 助凝劑 28
第三章 材料與方法 31
3.1 現場環境基本資料 31
3.2 試驗設備 35
3.3 光照強度控制與溫度模擬 36
3.3.1 光照測試與控制 36
3.3.1.1 光度計校正 36
3.3.1.2 水中與藻液消光係數 38
3.3.2 藻液溫度模擬 39
3.4 藻種 41
3.5 養殖系統建立 44
3.6 養殖實驗流程 47
3.6.1 前培養 (育成桶) 48
3.6.2 主培養 (OTPS) 48
3.6.3 生長控制條件 49
3.7 微藻類的收集方式 52
3.7.1 混凝劑與高分子凝集劑配製 52
3.7.2 沈澱絆除法 52
3.7.3 溶氣浮除法 53
3.8 實驗分析方法 55
3.8.1 光照強度測定 55
3.8.2 微藻濃度分析方法 55
3.8.3 成長速率計算 57
3.8.4 水質監測 57
3.9 統計分析方法 58
第四章 結果與討論 59
4.1 光照強度衰減與控制模式 59
4.1.1 藻液內光照強度衰減 62
4.2 溫控模擬分析 63
4.3 戶外養殖成果 67
4.3.1 育成桶前培養 67
4.3.2 OTCPS主培養 70
4.3.2.1 戶外養殖成果 70
4.3.2.2 產率比較 75
4.4 現場環境因子與藻液濃度監測 77
4.4.1 溫度控制與監測 77
4.4.2 光照強度控制與監測 80
4.4.3 PH值監測結果 84
4.4.4 綜合討論與小結 87
4.5 藻類收集 88
4.5.1 藻液沉降瓶杯試驗 88
4.5.2 現場藻類收集 92
4.5.2.1 沉澱絆除 92
4.5.2.2 溶氣浮除法 94
4.4 顯著性及相關性分析 97
第五章 結論與建議 101
5.1 結論 101
5.2 建議 103
參考文獻 105
附錄A 生長條件建立 115
附錄B 營養鹽監測資料 119
附錄C 相關性分析資料 121
參考文獻 References
1. 交通部中央氣象局全球資網, http://www.cwb.gov.tw/.
2. 郭昶呈, 劉奕辰, 周函輝 & 蕭丞祺,(2006),以碳酸氫鈉為碳源於鹼液環境 批次培養擬球藻(B),學生專題報告, 大葉大學環境工程學系
3. 陳昇明(譯),(1985),植物生理學,三民出版社
4. 陳燕珍,(1986),光合作用,自然科學文化出版社
5. 陳鎮東,(1994),海洋化學,茂昌出版社
6. 傅俊中,(2005),自動控制技術專輯─生物反應工程技術,機械工業,265,154-166
7. 程信雄,(2006),以碳酸鈉與碳酸氫鈉為碳源於連續式光生化反應器培養周氏扁藻,碩士論文,大葉大學環境工程學系碩士班
8. 張惟閔,(2005),微藻培養於新型光生化反應器之系統開發,碩士論文,國立清華大學化學工程研究所
9. 黃啟峰,(2006),高分子凝集劑與藻體混凝之影響與膠羽特性之研究,碩士論文,國立成功大學環境工程系
10. 洪志瑞,(2007),油質性微藻培養於新型光生化反應器之研究,碩士論文,國立成功大學化學工程學系
11. 劉康克,(1992),化學與生活專輯─化學與全球變遷,科學月刊, 23(9), 661-668.
12. 藍大鈞,(2002),藻類固定二氧化碳與藻體的利用研究,碩士論文,長庚大學化工與材料工程學系
13. 歐陽嶠暉,(2004),下水道工程學,長松文化公司
14. 吳佩芬,(2006),利用本土淡水藻類產製生質柴油之可行性評估,碩士論文,逢甲大學環境工程與科學系
15. 蕭文卿,(2007),Excel 2007在統計學上的應用,松崗電腦圖書有限公司
16. 藍大鈞,(2002),藻類固定二氧化碳與藻體的利用研究,碩士論文,長庚大學化學工程研究所
17. 李澤民, 賴雪端, 陳仁治, 黃材成, 陳慶能,(2011),微細藻類生質能源生產成果報告,行政院國家科學委員會補助專題研究計畫,NSC 98-3114-P-110-001.
18. Apt, K.E. & Behrens, P.W. (1999). Commercial developments in microalgal biotechnology. Journal of Phycology, 35: 215-226.
19. Becker, E.W. (1994). Microalgae: Biotechnology and Microbiology Cambridge University Press.
20. Binaghi L., A. Del Borghi, A. Lodi, A. Converti*, M. Del Borghi. (2003). Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochem.38: 1341-1346.
21. Briley, D.S. & Knappe, D.R.U. (1998). Optimizing ferric sulfate coagulation condition fot the removal of algae. In Proceeding of the AWWA Annual Conference, Dallas: 21-25.
22. Connemann J, Fischer J. (1999). Biodiesel quality Y2K and market experiences with FAME. CEN/TC 19 Automotive Fuels Millennium Symposion. The Netherlands: Amsterdam, 25-26 Nov.
23. Chen, F. (1996). High cell density culture of microalgae in heterotrophic growth. Trends in Biotechnology, 14: 421-426.
24. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25: 294-306.
25. Chohji, T., Tabata, M. & Hirai, E. (1997). CO2 recovery from flue gas by an ecotechnological (environmentally friendly) system. Energy, 22: 151-159.
26. De-Bashan, L.E., Hernandez, J.P., Morey, T. & Bashan, Y. (2004). Microalgae growth-promoting bacteria as "helpers" for microalgae: a novel approach for removing ammonium and phosphorus from municipal wastewater. Water Research, 38: 466-474.
27. Denich, T.J., Beaudette, L.A., Lee, H. & Trevors, J.T. (2003). Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. Journal of Microbiological Methods, 52: 149-182.
28. Dong, Q.L. & Zhao, X.M. (2004). In situ carbon dioxide fixation in the process of natural astaxanthin production by a mixed culture of Haematococcus pluvialis and Phaffia rhodozyma. Catalysis Today, 98: 537-544.
29. Deboer, JA, H. J, Guigli, TL Israel, & CF D'Elia. (1978). Nutritional studies of two red algae, I. Growth rate as a function on nitrogen source and concentration. Journal of Phycology, 14: 261-266.
30. Endo, T., Schreiber, U. & Asada, K. (1995). Suppression of quantum yield of Photosystem – II by hyperosmotic stress in Chlamydomonas-reinhardtII. Plant and Cell Physiology, 36: 1253-1258.
31. Fernandez, F.G.A., Camacho, F.G., Perez, J.A.S., Sevilla, J.M.F. & Grima, E.M. (1997). A model for light distribution and average solar irradiance inside outdoor tubular photobioreactors for the microalgal mass culture. Biotechnology and Bioengineering, 55: 701-714.
32. Fernandez, F.G.A., Sevilla, J.M.F., Perez, J.A.S., Grima, E.M. & Chisti, Y. (2001). Airlift-driven external-loop tubular photobioreactors for outdoor production of microalgae: assessment of design and performance. Chemical Engineering Science, 56: 2721-2732.
33. Fidalgo, J.P., Cid, A., Torres, E., Sukenik, A. & Herrero, C. (1998). Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture, 166: 105-116.
34. Garbisu, C., Gil, J.M., Bazin, M.J., Hall, D.O. & Serra, J.L. (1991). Removal of nitrate from water by foam-immobilized phormidium-laminosum in batch and continuous-flow bioreactors. Journal of Applied Phycology, 3: 221-234.
35. Grima, E.M., Belarbi, E.H., Fernandez, F.G.A., Medina, A.R. & Chisti, Y. (2003). Recovery of microalgal biomass and metabolites: process options and economics. Biotechnology Advances, 20: 491-515.
36. Henderson, R.K., Parsons, S.A. & Jefferson, B. (2009). The Potential for Using Bubble Modification Chemicals in Dissolved Air Flotation for Algae Removal. Separation Science and Technology, 44: 1923-1940.
37. Hu, Q. (2004). Environmental effects on cell composition.Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Blackwell Science: 85-88.
38. Hu, Q., Guterman, H. & Richmond, A. (1996). A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs. Biotechnology and Bioengineering, 51: 51-60.
39. Ibelings, B.W., Kroon, B.M.A. & Mur, L.R. (1994). Acclimation of photosystem-II in a cyanobacterium and a eukaryotic green-alga to high and fluctuating photosynthetic photon flux densities, simulating light regimes induced by mixing in lakes. New Phytologist, 128: 407-424.
40. Lee, Y.K. (2001). Microalgal mass culture systems and methods: Their limitation and potential. Journal of Applied Phycology, 13: 307-315.
41. Li, A.S., Stoecker, D.K. & Coats, D.W. (2001). Use of the 'food vacuole content' method to estimate grazing by the mixotrophic dinoflagellate Gyrodinium galatheanum on cryptophytes. Journal of Plankton Research, 23: 303-318.
42. Masojidek, J., Koblizek, M. & Torzillo, G. (2004). Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Photosynthesis in microalgae, Blackwell Science: 20-33.
43. Melis, A. (1991). Dynamics of photosynthetic membrane-composition and function. Biochimica Et Biophysica Acta, 1058: 87-106.
44. Merchuk, J.C., Ronen, M., Giris, S. & Arad, S. (1998). Light/dark cycles in the growth of the red microalga Porphyridium Sp. Biotechnology and Bioengineering, 59: 705-713.
45. Miao, X.L., Wu, Q.Y. & Yang, C.Y. (2004). Fast pyrolysis of microalgae to produce renewable fuels. Journal of Analytical and Applied Pyrolysis, 71: 855-863.
46. Molina, E., Fernandez, J., Acien, F.G. & Chisti, Y. (2001). Tubular photobioreactor design for algal cultures. Journal of Biotechnology, 92: 113-131.
47. Moreira SM, Moreira-Santos M, Guilhermino L, Ribeiro R. (2006). Immobilization of the marine microalga Phaeodactylum tricornutum in alginate for in situ experiments: Bead stability and suitability. Enzyme and Microbial Technology.38: 135–141.
48. Morita, M., Watanabe, Y. & Saiki, H. (2000). Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnology and Bioengineering, 69: 693-698.
49. Pulz, O. (2001). Photobioreactors: production systems for phototrophic microorganisms. Applied Microbiology and Biotechnology, 57: 287-293.
50. Radmer, R.J. & Parker, B.C. (1994). Commercial applications of algae - opportunities and constraints. Journal of Applied Phycology, 6: 93-98.
51. Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for Single Cell Oil production. Biochimie, 86: 807-815.
52. Renaud, S.M. & Parry, D.L. (1994). Microalgae for use in tropical aquaculture 2 effect of salinity on growth gross chemical-composition and fatty-acid composition of 3 species of marine microalgae. Journal of Applied Phycology, 6: 347-356.
53. Renaud, S.M., Thinh, L.V., Lambrinidis, G. & Parry, D.L. (2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture, 211: 195-214.
54. Renaud, S.M., Zhou, H.C., Parry, D.L., Thinh, L.V. & Woo, K.C. (1995). Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp, Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp (clone T ISO). Journal of Applied Phycology, 7: 595-602.
55. Richmond, A. (2004). Principles for attaining maximal microalgal productivity in photobioreactors: an overview. Hydrobiologia, 512: 33-37.
56. Rocha, J.M.S., Garcia, J.E.C. & Henriques, M.H.F. (2003). Growth aspects of the marine microalga Nannochloropsis gaditana. Biomolecular Engineering, 20: 237-242.
57. Rubio, F.C., Fernandez, F.G.A., Perez, J.A.S., Camacho, F.G. & Grima, E.M. (1999). Prediction of dissolved oxygen and carbon dioxide concentration profiles in tubular photobioreactors for microalgal culture. Biotechnology and Bioengineering, 62: 71-86.
58. Rubio, F.C., Miron, A.S., Garcia, M.C.C., Camacho, F.G., Grima, E.M. & Chisti, Y. (2004). Mixing in bubble columns: a new approach for characterizing dispersion coefficients. Chemical Engineering Science, 59: 4369-4376.
59. Sato, T., Usui, S., Tsuchiya, Y. & Kondo, Y. (2006). Invention of outdoor closed type photobioreactor for microalgae. Energy Conversion and Management, 47: 791-799.
60. Smutek, R.B. & Václav;Dittrt, F. (1975). CO2 Balance in industrial cultivation of algae. Archiv fur Hydrobiologie, 46: 297-310.
61. Sobczuk, T.M., Camacho, F.G., Rubio, F.C., Fernandez, F.G.A. & Grima, E.M. (1999). Carbon dioxide uptake efficiency by outdoor microalgal cultures in tubular airlift photobioreactors. Biotechnology and Bioengineering, 67: 465-475.
62. Sukenik, A., Carmeli, Y. & Berner, T. (1989). Regulation of fatty-acid composition by irradiance level in the eustigmatophyte Nannochloropsis sp. Journal of Phycology, 25: 686-692.
63. Susan M.R*., Luong-Van, T., George, L., David, L.P.(2002). Effect of temperature on growth, chemical composition and fatty acid composition of tropical Australian microalgae grown in batch cultures. Aquaculture 211, 195–214.
64. Tam, N.F.Y. & Wong, Y.S. (2000). Effect of immobilized microalgal bead concentrations on wastewater nutrient removal. Environmental Pollution, 107: 145-151.
65. Tapie, P. & Bernard, A. (1988). Microalgae production – technical and economic evaluations. Biotechnology and Bioengineering, 32: 873-885.
66. Terry, K.L. & Raymond, L.P. (1985). System – design for the autotrophic production of microalgae. Enzyme and Microbial Technology, 7: 474-487.
67. Turpin, DH. (1991). Effect of inorganic N availability on algal photosynthesis and carbon metabolism. Journal of Phycology. 27: 14-20.
68. Metting B, Pyne JW. (1986). Biologically-active compounds from microalgae. Enzyme and Microbial Technology, 8:386–94.
69. Wen, Z.Y. & Chen, F. (2003). Heterotrophic production of eicosapentaenoic acid by microalgae. Biotechnology Advances, 21: 273-294.
70. Wetzel, R.G. (2001). Limnology. Academic Press, 3rd edition.
71. Zittelli, G.C., Pastorelli, R. & Tredici, M.R. (2000). A Modular Flat Panel Photobioreactor (MFPP) for indoor mass cultivation of Nannochloropsis sp under artificial illumination. Journal of Applied Phycology, 12: 521-526.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.136.170
論文開放下載的時間是 校外不公開

Your IP address is 13.59.136.170
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code