Responsive image
博碩士論文 etd-0713112-175326 詳細資訊
Title page for etd-0713112-175326
論文名稱
Title
含電動車負載之配電系統運轉規劃
Operation Planning of Distribution Feeders with Electric Vehicle Loads
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-06-07
繳交日期
Date of Submission
2012-07-13
關鍵字
Keywords
智慧電網、配電系統、電動車、饋線重組、V2G
Distribution network, V2G, feeder reconfiguration, electric vehicle, smart grid
統計
Statistics
本論文已被瀏覽 5735 次,被下載 3351
The thesis/dissertation has been browsed 5735 times, has been downloaded 3351 times.
中文摘要
電動車將很快地成為未來路上主要交通工具。隨著電動車盛行,電力公司可能無法對電動車充電時間及充電地點加以控制,大量且頻繁的電動車充電將對現有配電系統網路運行產生衝擊。由於電動車充電負載需求呈現高度不確定性,使得配電系統的運轉與規劃變得更加複雜。本研究中,馬可夫模型被用來計算電動車位置及充電的機率。為了舒緩電動車對配電系統之負載及電壓品質衝擊,我們
建議利用饋線重組來降低電動車充電對配電系統之衝擊。饋線重組問題,可以表示為隨機規劃問題,最佳化目標是最小化系統損失及開關切換成本,並滿足系統為放射狀及所有安全限制條件。本研究利用粒子群演算法求解該問題。研究結果顯示在不同用戶類型的饋線(住宅區、商業區和工業區用戶)和隨機多變的電動車充電負載情況下,饋線重組確實能夠達到降低且舒緩電動車對配電系統之衝擊並且達到有效利用現在配電系統的目標。
Abstract
In the next decade, electric vehicles (EV) will be heading to the road in a fast speed. Utility company would have no control over the future EV charging points or stations, and no direct control over periods and frequency of EV charging that could cause great effects to the existing distribution network operations if not well planned. Distribution system operation and expansion planning would become more complicated
due to the high degree of uncertainty of the EV charging demand. Markov model is used in this study to calculate the probabilities and locations of EV charging. To mitigate the loading and voltage quality problem, feeder reconfiguration is proposed. The problem is formulated as an stochastic programming program with an objective function of minimizing total switching and system loss costs, and subject to radial
structure of the distribution network and security constraints. The problem is solved by a binary particle swarm optimization technique. Test results indicate that feeder reconfiguration can be exercised to match loading patterns of different types of feeders (residential, commercial and industrial) with various stochastic charging scenarios, and consequently, reduce the impacts of EV charging and optimize the use of the existing network.
目次 Table of Contents
論文審定書 ........................................................................ I
誌謝 .................................................................................... II
中文摘要 ........................................................................... III
英文摘要 ........................................................................... IV
目錄 .................................................................................... V
圖目錄 .............................................................................. VII
表目錄 ................................................................................ X
第一章 緒論 ...................................................................... 1
1.1 研究背景與動機 .......................................................... 1
1.2 相關文獻回顧 .............................................................. 2
1.3 本論文之成果 .............................................................. 7
1.4 論文架構 ...................................................................... 8
第二章 配電負載潮流與電動車負載模型 ....................... 9
2.1 配電負載潮流 ............................................................... 9
2.1.1 隱含bus Z 高斯法 ................................................... 14
2.1.2 後向/前向掃描法 ..................................................... 17
2.1.3 BIBC 及BCBV 矩陣法 ............................................ 23
2.1.4 修正型牛頓法 .......................................................... 28
2.1.5 簡易負載潮流方法 .................................................. 35
2.2 含電動車充電之機率負載潮流 ................................. 36
2.3 電動車充電負載模型 ................................................. 38
第三章 含電動車電能補充之配電饋線重組 .................. 47
3.1 電動車充電負載對電網之衝擊分析 ......................... 47
3.2 饋線重組最佳化問題 ................................................. 53
3.3 求解方法 ..................................................................... 56
第四章 案例模擬結果分析 .............................................. 64
4.1 測試系統架構 ............................................................. 64
4.2 案例描述 ..................................................................... 65
4.3 配電饋線電壓品質指標 ............................................. 67
4.4 分析結果討論 ............................................................. 68
第五章 結論及未來展望 .................................................. 87
5.1 結論 ............................................................................. 87
5.2 未來研究方向 ............................................................. 88
參考文獻 ............................................................................ 89
參考文獻 References
[1] 陳在相,辜志成,楊念哲,廖日能,巴賈義,柯唯翔,孫智超,曾翊誌,黃彥霖,台電99 年度委託案-電動車充電對電力品質及電力供應影響之研究-期中報告,2010 年12 月。
[2] R. Liu, L. Dow and E. Liu, “A Survey of PEV Impacts on Electric Utilities,” Proceedings of 2011 IEEE PES Innovative Smart Grid Technologies (ISGT) Conference, January 2011, pp. 1-8.
[3] P. Richardson, D. Flynn, A. Keane, “Impact Assessment of Varying Penetrations of Electric Vehicles on Low Voltage Distribution Systems,” Proceedings of IEEE PES General Meeting, 2010 IEEE, July 2010, pp. 1-6.
[4] W. Shireen and S. Patel, “Plug-in Hybrid Electric Vehicles in the Smart Grid Environment,” Proceedings of Transmission and Distribution Conference and
Exposition, 2010 IEEE PES, 2010, pp. 1-4.
[5] F. Koyanagi, Y. Uriu, “A Strategy of Load Leveling by Charging and Discharging Time Control of Electric Vehicles,” IEEE Transactions on Power Systems, vol. 13, no. 3, August 1998, pp. 1179-1184.
[6] K. Mets, T. Verschueren, W. Haerick, C. Develder, and F. De Turck, “Optimizing Smart Energy Control Strategies for Plug-in Hybrid Electric Vehicle Charging,”
Proceedings of Network Operations and Management Symposium Workshops (NOMS Wksps), 2010 IEEE/IFIP, 2010, pp. 293-299.
[7] G. A. Putrus, P. Suwanapingkarl, D. Johnston, E. C. Bentley and M. Narayana, “Impact of Electric Vehicles on Power Distribution Networks,” Proceedings of
Vehicle Power and Propulsion Conference, 2009. VPPC '09. IEEE, 2009, pp. 827-831.
[8] A. Jimenez V. and N. Garcia, “Voltage Source Converter-Based Plug-In Electric Vehicle Model for Power Flow Studies,” The 2011 IEEE PES General Meeting Advance Program of Technical Sessions and Committee Meetings, pp. 1-7.
[9] L. Kelly, “Probabilistic Modelling of Plug-in Hybrid Electric Vehicle Impacts on Distribution Networks in British Columbia,” B.A.Sc, University of Waterloo, 2005.
A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science.
[10] L. Xu, M. Marshall, and L. Dow, “A Framework for Assessing the Impact of Plug-In Electric Vehicle to Distribution Systems,” Proceedings of Power Systems
Conference and Exposition (PSCE), 2011 IEEE/PES, March 2011, pp. 1-6.
[11] S. Masoum, S. Deilami, P. S. Moses, and A. Abu-Siada, “Impacts of Battery Charging Rates of Plug-in Electric Vehicle on Smart Grid Distribution Systems,”
Proceedings of 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010, pp. 1-6.
[12] C. Roe, F. Evangelos, J. Meisel, and A. P. Meliopoulos, T. Overbye, “Power System Level Impacts of PHEVs,” Proceedings of the 42nd Hawaii International Conference on System Sciences, 2009, pp. 1-10.
[13] IEEE Guide for Loading Mineral-oil-immersed Transformers, IEEE Standard C57.91-1995, April 1996.
[14] IEEE Guide for Loading Mineral-oil-immersed Transformers Corrigendum 1, IEEE Standard C57.91-1995, 2003, pp. 0_1-9.
[15] W. J. McNutt, “Insulation Thermal Life Considerations for Transformer Loading Guides,” IEEE Trans. Power Delivery, vol. 7, no. 1, Jan. 1992, pp. 392-401.
[16] 李俊耀,”考慮變壓器超載折損之配電系統調度策略研究”,國立臺灣科技大學電機工程系博士學位論文,2007年7月。
[17] M. A. S. Masoum, S. Deilami, and S. Islam, “Mitigation of Harmonics in Smart Grids with High Penetration of Plug-in Electric Vehicles,” Proceedings of Power and Energy Society General Meeting, 2010 IEEE, 2010, pp. 1-6.
[18] P. S. Moses, S. Deilami, A. S. Masoum, and M. A. S. Masoum, “Power Quality of Smart Grids with Plug-in Electric Vehicles Considering Battery Charging Profile,”
Proceedings of 2010 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT Europe), 2010, pp. 1-7.
[19] 陳在相,廖清榮,辜志成,楊念哲,廖日能,巴賈義,柯唯翔,鐘易璋,李育軒,林柏.,朱啟瑞,劉純貴,台電99年度委託案-電動車充電對電力品質及電力供應影響之研究-完成報告,2012年5月。
[20] J. Taylor, A. Maitra, M. Alexander, D. Brooks and M. Duvall, “Evaluations of Plug-in Electric Vehicle Distribution System Impacts,” Proceedings of 2010 IEEE Power and Energy Society General Meeting, July 2010, pp. 1-6.
[21] L. Dow, M. Marshall, L. Xu, J. R. Aguero, and H. L. Willis, “A Novel Approach for Evaluating the Impact of Electric Vehicles on the Power Distribution System,”
Proceedings of 2010 IEEE Power and Energy Society General Meeting, July 2010, pp. 1-6.
[22] L. P. Fernandez, T. G. San Roman, R. Cossent, C. M. Domingo, and P. Frias, “Assessment of the Impact of Plug-in Electric Vehicles on Distribution Networks,”
IEEE Transactions on Power Systems, vol. 26, no. 1, Feb. 2011, pp. 206-213.
[23] T. H. Chen, M. S. Chen, K. J. Hwang, P. Kotas, and E. A. Chebli, “Distribution System Power Flow Analysis – A Rigid Approach,” IEEE Transactions on Power Delivery, vol. 6, no. 3, Jul. 1991, pp. 1146-1152 .
[24] C. S. Cheng and D. Shlrmohammadi, “A Three-phase Power Flow Method for Real-time Distribution System Analysis,” IEEE Transactions on Power Systems, vol. 10, no. 2, May 1995, pp. 671-679.
[25] D. Shirmohammadi, H. W. Hong, A. Semlyen and G. X. Luo, "A Compensation-based Power Flow Method for Weakly Meshed Distribution and Transmission Networks," IEEE Trans. on Power Systems, vol. 3, no. 2, May 1988, pp.753-762.
[26] G. X. Luo and A. Semlyen, “Efficient Load Flow for Large Weakly Meshed Networks,” IEEE Trans. On Power Systems, vo1. 5, no. 4, November 1990, pp.1309-1316.
[27] D. Rajicic, R. Ackovski and R. Taleski, "Voltage Correction Power Flow", Paper 93 WM 060-4 PWRD, presented at the IEEERES 1993 Winter Meeting, Columbus, OH, Jan. 31 - Feb. 5, 1993.
[28] W. Xu, J. R. Marti and H. W. Dommel, "A Multiphase Harmonic Load Flow Solution Technique," IEEE Trans. on Power Systems, vol. 6, no. 2, Feb. 1991, pp. 174-182.
[29] J. H. Teng, “A Direct Approach for Distribution System Load Flow Solutions,” IEEE Transactions on Power Delivery, vol. 18, no. 3, July 2003, pp. 882-887.
[30] W. H. Kersting and D. L. Mendive, “An Application of Ladder Network Theory to the Solution of Three Phase Radial Load Flow Problems,” 1976 IEEE PES Winter Meeting, Paper No. A76 044-8.
[31] R. D. Zimmerman and H. D. Chiang, “Fast Decoupled Power Flow for Unbalanced Radial Distribution Systems,” 1995 IEEE PES Winter Meeting, New York, Paper No. 95 WM 219-6 PWRS.
[32] W. H. Kersting and D. L. Mendive, “An Application of Ladder Network Theory to the Solution of Three Phase Radial Load Flow Problems,” 1976 IEEE PES Winter Meeting, Paper No. A76 044-8.
[33] F. Zhang and C. S. Cheng, “A Modified Newton Method for Radial Distribution System Power Flow Analysis,” IEEE Transactions on Power Systems,
[34] 蘇勝一,”提高分散式電源併聯容量之饋線開關及電壓整合控制”,國立中山大學電機工程學系碩士論文,2009年7月。
[35] 孔廉、張緯良,”作業研究”,五南圖書出版有限公司,2000年。
[36] 高崑銘,吳信宏,謝俊逸,”利用馬可夫鏈模式分析便利商店顧客之消費模式”,價值管理,2005年12月,第九期。
[37] B. Armstrong and D. Davis, Finite Mathematics, Prentice Hall, 2003.
[38] 朝賢,”作業研究概論”,弘業文化實業股份有限公司,1977年。
[39] 蓉昌、趙浡霖,”作業研究(計畫管制)”,新學識文教出版中心,1988年。
[40] F. J. Soares, J. A. Pecas Lopes, P. M. Rocha Almeida, C. L. Moreira, and Luis Seca, “A Stochastic Model to Simulate Electric Vehicles Motion and Quantify the Energy Required from the Grid,” 17th Power Systems Computation Conference, 2011, August 22-26.
[41] Nissan Leaf電動車資訊網頁,有效網址http://www.nissanusa.com/leaf-electric- car/tags/show/performance#/leaf-electric-c
ar/
[42] Rav4EV電動車資訊網頁,有效網址http://www.evnut.com/rav_data.htm
[43] J. Linderoth, A. Shapiro, and S. Wright, “The Empirical Behavior of Sampling Methods for Stochastic Programming,” Ann Oper Res (2006) 142: 215–241.
[44] 王俊偉,汪定偉,”粒子群算法中慣性權重的實驗與分析”,系統工程學報,vol. 20, pp. 194-198, 2005年。
[45] 譚瑛,高慧敏,曾建潮,”求整數規劃問題的微粒群算法”,系統工程理論與實踐,vol. 5, 2004年。
[46] R. Bellman, Dynamic Programming, Princeton University Press, 1957.
[47] BLAST Support Office, “Building Load and System Thermodynamics User Manual and Source Code,” University of Illinois, Urbana, 1995.
[48] 崔文吉,”配電系統中考慮分散式電源併聯的電壓控制策略”,國立中山大學,2007年。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code