Responsive image
博碩士論文 etd-0713113-125128 詳細資訊
Title page for etd-0713113-125128
論文名稱
Title
以化學汽相沉積法生長氧化鋅於氮化鎵酸鋰基板之研究
Study of ZnO epitaxial growth on the nitridated LiGaO2 substrate by chemical vaper deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-06-26
繳交日期
Date of Submission
2013-08-13
關鍵字
Keywords
氧化鋅、化學氣相沉積、氮化、磊晶、非極性
CVD, nitridation, ZnO, epitaxy, nonpola
統計
Statistics
本論文已被瀏覽 5712 次,被下載 0
The thesis/dissertation has been browsed 5712 times, has been downloaded 0 times.
中文摘要
本研究利用水平管狀加熱爐作化學汽相沉積 ( Chemical Vapor Deposition, CVD),主要以改良後的LiGaO2(A-LiGaO2)為基板,以Zinc 2,4-pentanedionate monohydrate[Zn(C5H7O2)2.H2O]作為鋅的前驅物(precursor),以氮氣為載流氣體(carrier gas),通入氧氣作反應氣體,磊晶成長氧化鋅(Zinc Oxide, ZnO)。
本研究第一步驟,在LGO(100)基板上先氮化一層多孔氮化鎵(GaN),利用化學氣相沉積法,通入氨氣(NH3)對基板表面進行氮化。
本研究發現LGO基板氮化在攝氏800度時即開始反應,但在攝氏950度時所氮化出的LGO基板結晶品質較好,故為避免氮化過程因過早通入氨氣,而造成基板表面在較不適宜氮化的溫度下反應,在反應溫度到達前先行通入氮氣(N2),以防止在不適宜溫度下氮化,亦可避免LGO基板在高溫低壓下容易產生裂解。經由此方法改變,有明顯改善LGO基板氮化結晶品質。
本研究第二步驟,透過化學氣相沉積法磊晶ZnO(10-10)薄膜,經由文獻回顧得知M面與C面ZnO生長主要決定於溫度參數的控制,因此,在成長ZnO薄膜思考邏輯,先找到適合成長M面ZnO薄膜的溫度,利用爐心區溫度梯度最小,首先將沉積位置參數設置在爐心正上方,找到合適的M面生長溫度。透過SEM與XRD的分析結果,在爐心溫度攝氏750度時,SEM可觀察到 M面與C面ZnO的表面形貌。繞射峰半高寬量測為0.609,透過溫度梯度較小的爐心確認M面生長溫度參數後,首先經由改變薄膜成長時的磊晶溫度、鋅前驅物、氧氣及氮氣流量、控制爐管內溫度,經由表面形貌、結晶品質、光性與電性分析,探討氧化鋅薄膜成合及成長機制,進而改善化學氣相沉積法的製程條件,期待能透過低晶格失配度的基板達到結晶品質高,發光性質良好及導電性佳,且低缺陷密度的半導體元件。
Abstract
In this study, the level of tubular furnaces for chemical vapor deposition (Chemical Vapor Deposition, CVD), mainly to improve after LiGaO2 (A-LiGaO2) as the substrate for Zinc 2,4-pentanedionate monohydrate [Zn (C5H7O2) 2. H2O] as zinc precursor (precursor), with nitrogen as the carrier gas (carrier gas), leads to oxygen as a reactive gas, epitaxial growth of zinc oxide (Zinc Oxide, ZnO).
The first step of this study, the LGO (100) a porous substrate, the first gallium nitride (GaN), by chemical vapor deposition method, the ammonia (NH3) on the substrate surface is nitrided.
The study found that LGO nitride substrate 800 degrees Celsius when the reaction starts, but 950 degrees Celsius when the nitride crystal substrate LGO out better quality, so as to avoid premature nitriding process pass into ammonia, which leads to in the more suitable substrate surface temperature nitriding reaction, the reaction temperature reached before the first nitrogen gas (N2), to prevent the suitable temperature nitriding, also prevent the substrate at high temperatures under low pressure LGO prone to cracking. Through this method to change, a significant improvement in the quality of LGO crystal nitride substrate.
In this study, a second step, by chemical vapor deposition epitaxy ZnO (10-10) film, review of the literature that an M-plane and C-plane ZnO grown mainly determined by the temperature control parameters, therefore, the growth of ZnO film of logic , first find the M-plane ZnO thin films suitable for growing temperature, temperature gradient using the reactor core area smallest first positional parameter settings will be deposited directly above the reactor core, to find a suitable M-plane growth temperature. By SEM and XRD analysis result, the temperature of the reactor core 750 degrees Celsius, SEM observed M-plane and C side surface morphology of ZnO. Diffraction peak FWHM measured as 0.609, the smaller temperature gradient through the reactor core Confirm M-plane growth temperature parameters, first by changing the epitaxial film growth temperature, zinc precursor, oxygen and nitrogen flow, the control tube temperature, via the surface morphology, crystal quality, optical properties and electrical analysis to explore zinc oxide thin film growth mechanism into the mix and, thereby improving the chemical vapor deposition process conditions, looking forward to a low lattice mismatch with the substrate to achieve high crystal quality, excellent luminescence properties, and good conductivity, and low defect density semiconductor element.
目次 Table of Contents
摘要 i
目錄 iv
表目錄 vii
圖目錄 ix
第一章 序論 1
第二章 文獻回顧與理論基礎 2
2-1 文獻回顧 2
2-2 異質磊晶薄膜與緩衝層 4
2-2-1 異質磊晶薄膜 4
2-2-2 緩衝層(BUFFER LAYER) 4
2-3 非極性面(100)鎵酸鋰(LIGAO2,LGO) 6
2-4 氮化鎵(GAN) 7
2-4-1 氮化鎵基本性質 8
2-4-2 多孔氮化鎵(POROUS GAN) 9
2-5 氧化鋅(ZNO) 9
2-5-1 氧化鋅基本性質 9
2-5-2 非極性氧化鋅 10
2-6 研究動機 12
第三章 實驗內容 13
3-1 實驗流程 13
3-2 磊晶製程 14
3-2-1 實驗裝置 14
3-2-2 實驗步驟 15
3-2-3 實驗參數 16
3-3 試片分析 21
3-3-1 分析原理 21
第四章 實驗結果 24
4-1 A面LGO(100)基板氮化實驗與對照組 24
4-1-1 XRD分析 25
4-1-2 SEM表面形貌分析 27
4-2 C面LGO(001)基板氮化實驗與對照組 28
4-2-1 XRD分析 29
4-3 A面LGO(100)改變氮化時間為變異參數之參數表 31
4-3-1 XRD分析 31
4-3-2 SEM表面形貌分析 33
4-4 A面LGO通入氫氣(H2)探討氫氣(H2)氛圍下做為變異參數之參數表 34
4-4-1 XRD分析 35
4-4-2 SEM表面形貌分析 36
4-5 A面LGO(100)在氫氣(H2)與氨氣(NH3)氛圍做為變異參數之參數表 37
4-5-1 XRD分析 37
4-5-2 SEM表面形貌分析 39
4-6 A面LGO在氫氣(H2)與氨氣(NH3)氛圍做為溫度變異參數之參數表 39
4-6-1 XRD分析 40
4-6-2 SEM表面形貌分析 42
4-7 溫梯較小之爐心區調變溫度變異磊晶M面(10-10)氧化鋅(ZnO) 43
4-7-1 XRD分析 44
4-7-2 SEM表面形貌分析 47
4-7-3 PL 發光性質分析 50
4-8 改變基板位置對ZNO磊晶的影響 52
4-8-1 XRD分析 52
4-8-2 SEM表面形貌分析 54
4-8-3 PL 發光性質分析 57
4-9 改善生長方式調變溫度變異磊晶M面(10-10)氧化鋅(ZNO) 58
4-9-1 SEM表面形貌分析 59
4-10 調變流量變異磊晶M面(10-10)氧化鋅(ZNO) 61
4-10-1 XRD分析 62
4-10-2 SEM表面形貌分析 63
4-10-3 PL 發光性質分析 65
4-11 調變壓力參數磊晶M面(10-10)氧化鋅(ZNO) 67
4-11-1 XRD分析 67
4-11-2 SEM表面形貌分析 69
4-11-3 PL 發光性質分析 72

4-12 調變氧氣(O2)流量參數磊晶M面(10-10)氧化鋅(ZNO) 73
4-12-1 XRD分析 73
4-12-2 SEM表面形貌分析 75
4-12-3 PL 發光性質分析 77
4-13 深入分析 78
4-13-1 磊晶關係 78
4-13-2 應力分析 80
4-13-3 AFM 表面分析 82

第五章 討論 85
第六章 結論 87
第七章 參考文獻 88
參考文獻 References
 [1] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, Y. Sugimoto, and H. Kiyoku, Appl. Phys. Lett., 70, (1997), 1417.
 [2] S. M. Kang, T. I. Shin, D. V. Dihn, J. H. Yang, S. Kim, and D. H. Yoon, J. Cryst. Growth, 311, (2009), 490.
 [3] X. Wang and A. Yoshikawa, Prog. Cryst. Growth Charact. Mater., 48/49, (2004), 42.
 [4] Y. Nanishi, Y. Saito, and T. Yamaguchi, Jpn. J. Appl. Phys., 42, (2003) , 2549.
 [5] J. Wu and W. Walukiewicz, Superlattices Microstructures, 34, (2003), 63.
 [6] A. Tsukazaki, A. Ohtomo, T. Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S.F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, M. Kawasaki. Nat. Mater. 4, (2005), 42.
 [7] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma and Y. Segawa, Solid State Commun. 103, (1997), 459.
 [8] V. Srikant, D.R. Clarke, J. Appl. Phys., 83, (1998), 5447.
 [9] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth , 98, (1989), 209.
 [10] J.Zou,S. Zhou,C. Xia, Y. Hang,J. Xu,S. Gu, and R. Zhang, J.Cryst. Growth,280, (2005), 185.
 [11] J.Zou,S. Zhou,C. Xia, X. Zhang, F.Su, G.Peng,X. Li, and J. Xu,Thin Solid Films, 496, (2006), 205.
 [12] 鐘曉儀,”以化學汽相沉積法成長(10-10)非極性氧化鋅薄膜於鋁酸鋰基板”,國立中山大學材料科學研究所碩士論文,(2007) 。
 [13] L. Chang, M.M.C.Chou,T.-H.Hwang,C.-W.Chen,Phys.Stat.Sol.(a), 206, (2009), 215.
 [14] 余俊毅,”非極性氧化鋅磊晶在鎵酸鋰基板之成長機構研究”,國立中山大學材料科學研究所碩士論文,(2010)。
 [15] S.H. Jeong, I. S.Kim, S.S.Kim,B.T.Lee,J.Cryst.Growth, 264, (2004), 110.
 [16] Y.Chen, S.K. Hong, H.J.Ko, V.Kirshner, H. Wenisch, T.Yao,K. Inaba,and Y.Segawa. Appl. Phys. Lett., 78, (2001), 3352.
 [17] T. Nakamura, Y.Yamada,T.Kusumori,H. Minoura and H. Muto, “Thin Solid Films”, 411, (2002), 60-64.
 [18] T. Sahoo, J. W. Jeon, V. Kannan, C. R. Lee, Y. T. Yu,Y. W. Song, I. H. Lee, Thin Solid Films, 516, (2008), 8244.
 [19] H. Lin, S. Zhou, H. Teng, X. Hou, T. Jia, S. Gu, S. Zhu, Z. Xie, P. Han, R. Zhang, K. Xu, Appl. Surf. Science, 255, (2009), 9146.
 [20] S. Liua, S. Zhoua, Y. Wanga, X. Zhang, X. Lib, C. Xiaa, Y. Hanga, J. Xu, J. Cryst. Growth, 292, (2006), 125.
 [21] M. Marezio, Acta Crystallogr. 18, (1965), 481.
 [22] J.P. Remeika, A.A. Ballman, Appl. Phys. Lett. 5, (1964), 180.
 [23] L. Liu and J.H. Edgar, “Substrates for gallium nitride epitaxy”, Materials Science and Engineering R, 37, (2002), 61.
 [24] 陳偉任,”利用化學汽相沉積法生長(0002)氧化鋅薄膜在LiGaO2(001)基板上”,國立中山大學材料科學研究所博士論文研究計畫書,(2011)。
 [25] 黃鐙興,”磊晶於鋁酸鋰與鎵酸鋰基板的氧化鋅薄膜之微結構研究”,國立中山大學材料科學研究所博士論文研究計畫書,(2010)。
 [26] T. Lei, M. Fanciulli, R. J. Molnar and T. D. Moustakas, Appl. Phys. Lett., 59, (1991), 944.
 [27] S. R. Morrison, Sensors and Actuators, 12, (1987), 425.
 [28] J. C. Anderson, Journal of Vaccum Science Technology A4, (1986), 610.
 [29] U. Lampe, Ceramics Bulletin, 69, (1990), 1959.
 [30] X. T. Zhang, Y. C. Liu, Z. Z. Zhi, J. Y. Zhang, Y. M. Lu, D. Z. Shen, W. Xu, X. W. Fan, X. G. Kong, J. Lumin. 99, (2002), 149.
 [31] G. Vaschenko, D. patel, C. S. Menoni, N. F. Gardner, J. Sun, W. Gotz, C. N. Tome, B. 53 Clausen, Phys. Rev. B., 64, (2001), 241-308.
 [32] F. Vigue, P. Vennegues, S. Vezian, M. Laugt, and J.-P. Fauie, Appl. Phys.Lett., 79, (2001), 194.
 [33] M.M.C. Chou, D.R. Hang, H. Kalisch, R.H. Jansen, Y. Dikme, M. Heuken, G.P. Yablonskii, J. Appl. Phys., 101, (2007), 103-106.
 [34] J. Zhao, L. Hu, Z.Wang, Z. Wang, H. Zhang,Y. Zhao, and X. Liang, J. Cryst.Growth, 280, (2005), 455.
 [35] K.Tanaka, N.Kotera, H Nakamura, Electronics Letters, 34, (1998), 2163.
 [36] 王欽輝,”在鎵酸鋰基板上經由與氨氣擴散形成M面(10-10)氮化鎵”,國立中山大學材料科學研究所博士論文研究計畫書,(2012)。
 [37] Y. Huang, M. Liu. Z. Li, Y. Zeng, S. Liu, Mater. Sci. Eng. B, 97 (2003) 111.
 [38] K.A. Alim, V.A. Fonoberov, A.A. Balandin, Appl. Phys. Lett., 86 (2005) 053103.
 [39] F. Decremps, J. Pellicer-Porres, A.M. Saitta, J.C. Chervin, A. Polian, Phys. Rev. B, 65 (2002) 092101.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.22.61.246
論文開放下載的時間是 校外不公開

Your IP address is 3.22.61.246
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code