Responsive image
博碩士論文 etd-0713114-195836 詳細資訊
Title page for etd-0713114-195836
論文名稱
Title
氮化處理的鋁酸鋰與鎵酸鋰基板上分子束磊晶成長氧化鋅的研究
Molecular beam epitaxy of ZnO on nitridated LiAlO2 (100) and LiGaO2 (100) substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-16
繳交日期
Date of Submission
2014-08-14
關鍵字
Keywords
基板氮化、分子束磊晶、鋁酸鋰、鎵酸鋰、氧化鋅
substrate nitridation, LiAlO2, molecular beam epitaxy, LiGaO2, ZnO
統計
Statistics
本論文已被瀏覽 5650 次,被下載 94
The thesis/dissertation has been browsed 5650 times, has been downloaded 94 times.
中文摘要
本研究以兩種方式進行基板氮化前處理,探討前處理對後續以分子束磊晶成長氧化鋅的影響,氮化處理分別為在(一):在水平式管型爐內通入氨氣,在高溫(800~1050 oC)下持溫3小時氮化鋁酸鋰(100)(γ-LiAlO2, LAO)基板,與在650 oC~700 oC 持溫10~20分鐘氮化鎵酸鋰(100)(β-LiGaO2, LGO)基板;(二):在分子束磊晶系統內以氮氣電漿源轟擊基板,電漿氮化溫度為200~600 oC,氮化時間為1~2小時,氮化後的基板分別以X光光電子能譜儀(XPS)與原子力顯微鏡(AFM)進行表面分析。分子束磊晶法成長氧化鋅的參數固定不變,成長溫度為700 oC,成長後的氧化鋅以高解析X光繞射儀(HRXRD)、光激發光譜儀(PL)和穿透式電子顯微鏡(TEM)分析磊晶的結晶、發光和缺陷等特性。
在未處理的LAO(100)基板上成長出沿[0001]方向的C平面和[10-10]方向的M平面氧化鋅磊晶,未處理的LGO(100)基板則成長M平面氧化鋅。根據XPS與TEM分析結果判斷,以氨氣氮化的LAO基板表面形成一層約5-10 nm的(0001)平面氮化鋁。因此後續的氧化鋅也是沿[0001]方向成長的C平面磊晶,其rocking curve的半高寬和PL的近能帶邊際(NBE)激發光強度,均隨著氮化溫度的增加而下降。
電漿氮化的LAO基板,由表面分析結果顯示並未生成氮化鋁,而是形成約2-3 nm的LiAl5O8,因此在200 oC/1小時與400 oC/2小時氮化後,皆磊晶成長為長條狀的M平面(10-10)氧化鋅磊晶,其中400 oC/2小時的氮化條件所成長的氧化鋅磊晶品質最佳,M平面的rocking curve半高寬由未氮化的1.23o降低至0.56o,PL光譜出現最強的NBE發光峰。
氨氣氮化的LGO基板表面形成氮化鎵,與未氮化LGO基板相同,皆成長出M平面氧化鋅磊晶,其PL的NBE發光峰強度增強,但是rocking curve的半高寬卻比未氮化基板上成長氧化鋅大,且氮化溫度越高、時間越久,磊晶品質相對降低。
Abstract
In this work, the influence of substrate nitridation on the subsequent growth of ZnO epilayers by plasma assisted molecular beam epitaxy (MBE) was studied. Two nitridation method were used. The first method is to nitride LiAlO2 (100) substrate at 800-1050 oC and LiGaO2 (100) substrate at 650-700 oC in NH3 in a horizontal tube furnace for 10 min to 3 hours. The second method is to irradiate (bombard) LAO substrate with nitrogen plasma at 200-600 oC for 1-2 h in the MBE system. The substrate surface after nitridation was analyzed by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Then the ZnO epilayers were grown by MBE under the same condition at 700 oC. The structure, defects and photoluminescence characteristics of the ZnO epilayers grown on nitridated substrates were investigated by high resolution X-ray diffraction (HRXRD), transmission electron microscopy (TEM) and photoluminescence (PL), in comparison with those grown on the substrates without nitridation.
Both c-plane and m-plane ZnO were grown on the untreated LiAlO2 (100) substrate, while only m-plane ZnO was deposited on the untreated LiGaO2 (100) substrate.A layer of 5-10 nm (0001) AlN was grown on the surface of LiAlO2 after nitridation by NH3. Only c-plane ZnO was grown on the nitridated substrate, and the full width at half maximum (FWHM) of (0002) rocking curve was lower than that grown on the untreated one. Moreover, the FWHM value as well as the near band edge (NBE) emission in the PL spectra decreased with the increase of nitridation temperature.
A layer of LiAl5O8 in thickness of 2-3 nm was formed on the surface of the LiAlO2 substrate after nitridation by nitrogen plasma. The ZnO epilayers grown on the substrates nitridated at 200 and 400 oC were merely (10-10) m-plane. The ZnO sample grown on the 400 oC-nitridated substrate exhibited the typical feature of long stripes on the surface, with the lowest FWHM value of 0.56o, and the strongest PL intensity at room temperature.
GaN was formed on the surface of the LiGaO2 substrate after nitridation by NH3. The growth orientation of the ZnO epilayers on nitridated substrates were the same as that without nitridation. The crystal quality of grown epilayers deteriorated owing to the nitridation process, and became even worse as the nitridation temperature increased. However, the PL intensity was enhanced greatly by one order of magnitude.
目次 Table of Contents
總目錄
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 v
總目錄 vii
表目錄 x
圖目錄 xi
第一章 前言 1
第二章 文獻回顧與理論基礎 3
2.1分子束磊晶法原理 3
2.2分子束磊晶系統 4
2.2.1 泵浦 4
2.2.2熱絲極離子真空計 5
2.2.3射頻電漿源 5
2.2.4分析儀器 5
2.3 磊晶成長機制 6
2.3.1表面自由能與成長模式 7
2.3.2 晶格失配與成長模式 8
2.4 基板 9
2.4.1 藍寶石基板 9
2.4.2 鋁酸鋰基板 9
2.4.3 鎵酸鋰基板 10
2.5 基板氮化 11
2.5.1 基板氮化原理與方法 11
2.5.2 藍寶石基板氮化 12
2.5.3 鋁酸鋰基板氮化 13
2.5.4 鎵酸鋰基板氮化 15
2.5.5 基板與氮化層和氧化鋅的晶格失配 16
2.5.6 氮化處理對磊晶的影響 16
2.6 分子束磊晶成長氧化鋅磊晶 17
2.6.1 極性與非極性氧化鋅 17
2.6.2 氧化鋅磊晶性質 18
第三章 實驗方法 19
3.1 磊晶基板氮化處理 19
3.2 氧化鋅磊晶成長 20
3.3 實驗分析 21
第四章 實驗結果 23
4.1 基板表面分析 23
4.2LAO(100)與LGO(100)成長氧化鋅磊晶分析 25
4.3氮化基板成長氧化鋅磊晶分析 26
4.3.1掃描式電子顯微鏡分析 26
4.3.2高解析X光繞射分析 27
4.3.3光致螢光光譜分析 29
4.3.4穿透式電子顯微鏡分析 30
第五章 討論 34
5.1基板氮化機制 34
5.2氨氣氮化LAO(100)對磊晶的影響 35
5.3電漿氮化LAO(100)對磊晶的影響 36
5.4氨氣氮化LGO(100)對磊晶的影響 36
第六章 結論 38
第七章 參考文獻 39
參考文獻 References
1. S. M. Sze, Semiconductor devices physics and technology, 2nd ed., New York, Wiley (2002).
2. G. Held, Introduction to light emitting diode technology and applications, Boca Raton, CRC Press (2008).
3. S. Pimputkar, J. S. Speck, S. P. DenBaars, and S. Nakamura, Prospects for LED lighting, Nat. Photonic, 3 (2009) 180-2.
4. S. Nakamura, S. Pearton, and G. Fasol, The blue laser diode: The complete story, 2nd ed., New York, Springer (2000).
5. S. Nakamura, T. Mukai, and M. Senoh, High-power GaN p-n junction blue-light-emitting diodes, Jpn. J. Appl. Phys., 30 (1991) L1998-L2001.
6. S. Nakamura, GaN growth using GaN buffer layer, Jpn. J. Appl. Phys., 30 (1991) L1705-7.
7. C. Jagadish and S. Pearton., Zinc oxide bulk, thin films and nanostructures: Processing, properties and applications, London, Elsevier (2006).
8. A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya et al., Repeated temperature modulation epitaxy for p-type doping and light-emitting diode based on ZnO, Nat. Mater., 4 (2005) 42-6.
9. Y. Chen, D. M. Bagnall, H. J. Koh, K. T. Park, K. Hiraga, Z. Zhu et al., Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization, J. Appl. Phys., 84 (1998) 3912-8.
10. X. Wang, H. Waki, M. Murakami, X. Du, Y. Ishitani, and A. Yoshikawa, Molecular beam epitaxy growth of single-domain and high-quality ZnO layers on nitrided (0001) sapphire surface, Jpn. J. Appl. Phys., 42 (2003) L99-L101.
11. N Grandjean, J. Massies, Y. Martinez, P. Vennegues, M Leroux, and M. Laugt, GaN epitaxial growth on sapphire (0001) the role of the substrate nitridation, J. Cryst. Growth, 178 (1997) 220-8.
12. 黃鐙興,“磊晶於鋁酸鋰基板的氧化鋅薄膜成長機構研究與缺陷分析”,國立中山大學材料科學研究所碩士論文,(2008)
13. J. Z. Perez, V. M. Sanjosé, E. P. Lidónand, and J. Colchero, Facets evolution and surface electrical properties of nonpolar m-plane ZnO thin films, Appl. Phys. Lett., 88 (2006) 261912.
14. 余俊毅,“非極性氧化鋅磊晶在鎵酸鋰之成長機構之研究”,國立中山大學材料科學與光電研究所碩士論文,(2010)
15. J. Y. Yu, T. H. Huang, L. Chang, Y. H. Liao, M. M. C. Chou, and D. Gan, Growth behavior of m-plane ZnO epilayer on (100) LiGaO2 by chemical vapor deposition, ECS Trans., 158 (2011) H1166-71.
16. C. H. Chen, J. Y. Yu, T. H. Huang, L. Chang, and M. M. C. Chou, Epitaxial growth of ZnO on LiAlO2 and LiGaO2 substrates by chemical vapor deposition, ECS Trans., 28 (2010) 33-44.
17. M. A. Herman and H. Sitter, Molecular beam epitaxy: Fundamentals and current status, Berlin, Springer (1996).
18. S. Franchi, Molecular beam epitaxy, Waltham, Elsevier (2012).
19. A. Chamber, Basic vacuum technology, 2nd ed., London, IOP (1998).
20. W. Braun, Applied RHEED: Reflection high-energy electron diffraction during crystal growth, Berlin, Springer (1999).
21. J. E. Ayers, Heteroepitaxy of semiconductors, Boca Raton, CRC press (2006).
22. T. Koyama and S. F. Chichibu, Importance of lattice matching and surface arrangement for the helicon-wave-excited-plasma sputtering epitaxy of ZnO, J. Appl. Phys., 95 (2004) 7856-61.
23. M. Marezio, The crystal structure and anomalous dispersion of γ-LiAlO2, Acta Cryst., 19 (1965) 396-400.
24. M. M. C. Chou, L. Chang, H. Y. Chung, T. H. Huang, J. J. Wu, and C. W. Chen, Growth and characterization of nonpolar ZnO (10-10) epitaxial film on γ-LiAlO2 substrate by chemical vapor deposition, J. Cryst. Growth, 308 (2007) 412-6.
25. 張達欣,“利用化學汽相沉積法生長非極性之氧化鋅(10-10)薄膜在鋁酸鋰板上”,國立中山大學材料科學研究所碩士論文,(2008)
26. O. Kryliouk, M. Reed, T. Dann, T. Anderson, and B. Chai, Large area GaN substrates, Mater. Sci. Eng. B, 66 (1999) 26-9.
27. S. Liu, S. Zhou, Y. Wang, X. Zhang, X. Li, C. Xia et al., Epitaxial growth of ZnO thin films on LiGaO2 substrates by pulsed-laser deposition, J. Cryst. Growth, 292 (2006) 125-8.
28. M. H. Kim, C. Sone, J. H. Yi, and E. Yoon, Changes in the growth mode of low temperature GaN buffer layers with nitrogen plasma nitridation of sapphire substrates, Appl. Phys. Lett., 71 (1997) 1228-30.
29. T. Akiyama, Y. Saito, K. Nakamura, and T. Ito, Stability of nitrogen incorporated Al2O3 surfaces: Formation of AlN layers by oxygen desorption, Surf. Sci., 606 (2012) 221-5.
30. T. Akiyama, Y. Saito, K. Nakamura, and T. Ito, Nitridation of Al2O3 surfaces: chemical and structural change triggered by oxygen desorption, Phys. Rev. Lett., 110 (2013) 026101.
31. L. Liu and J.H. Edgar, Substrates for gallium nitride epitaxy, Mater. Sci. Eng. R-Rep., 37 (2002) 61-127.
32. M. Yeadon, M.T. Michael, F. Hamdani, S. Pekin, H. Morkoc, and J.M. Gibson, In situ transmission electron microscopy of AlN growth by nitridation of (0001) α-Al2O3, J. Appl. Phys. 83 (1998) 2847-50.
33. F. Dwikusuma and T. F. Kuech, X-ray photoelectron spectroscopic study on sapphire nitridation for GaN growth by hydride vapor phase epitaxy: Nitridation mechanism, J. Appl. Phys., 94 (2003) 5656-64.
34. K. Uchida, A. Watanabe, F. Yano, M. Kouguchi, T. Tanaka, and S. Minagawa, Nitridation process of sapphire substrate surface and its effect on the growth of GaN, J. Appl. Phys., 79 (1996) 3487-91.
35. F. Widmann, G. Feuillet, B. Daudin, and J. L. Rouvière, Low temperature sapphire nitridation: A clue to optimize GaN layers grown by molecular beam epitaxy, J. Appl. Phys., 85 (1999) 1550-5.
36. Y. J. Sun, O. Brandt, and K. H. Ploog, Growth of m-plane GaN films on γ-LiAlO2 (100) with high phase purity, J. Vac. Sci. Technol. B, 21 (2003) 1350-6.
37. Y. Dikme, P. van Gemmern, B. Chai, D. Hill, A. Szymakowski, H. Kalisch et al., Growth studies of GaN and alloys on LiAlO2 by MOVPE, Phys. Stat. Sol. C, 2 (2005) 2161-5.
38. M. D. Reed, O. M. Kryliouk, M. A. Mastro, and T. J. Anderson, Growth and characterization of single-crystalline gallium nitride using (100) LiAlO2 substrates, J. Cryst. Growth, 274 (2005) 14-20.
39. C. Mauder, L. R. Khoshroo, H. Behmenburg, B. Reuters, M. Bosing, M. V. Rzheutskii et al., Impact of nitridation on structural and optical properties of MOVPE-grown m-plane GaN layers on LiAlO2, Phys. Stat. Sol. C, 6 (2009) S482-5.
40. K. R. Wang, C. Mauder, Q. Wan, B. Jenichen, J. F. Woitok, H. T. Grahn et al., Formation of a monocrystalline, m-plane AlN layer by the nitridation of γ-LiAlO2(100), Appl. Phys. Exp., 5 (2012) 105501.
41. S. Zollner, A. Konkar, R. B. Gregory, S. R. Wilson, S. A. Nikishin, and H. Temkin, Dielectric function of AlN grown on Si (111) by MBE, Res. Mater. Soc. Sym. Proc. 572 (1999) Y5.21.
42. W. Hetaba, A. Mogilatenko, and W. Neumann, Electron beam-induced oxygen desorption in γ-LiAlO2, Micron, 41 (2010) 479-83.
43. M. M. C. Chou, C. C. Hsu, C. Y. Lee, and C. L. Chen, A novel method to synthesize a large area of single crystalline LiAl5O8 nanorods, Cryst. Growth Des., 10 (2010) 191-4.
44. N. Grandjean, J. Massies, and M Leroux, Nitridation of sapphire. Effect on the optical properties of GaN epitaxial overlayers, Appl. Phys. Lett., 69 (1996) 2071-3.
45. O. Kryliouk, M. Reed, T. Dann, T. Anderson, and B. Chai, Growth of GaN single crystal substrates, Mater. Sci. Eng. B, 59 (1999) 6-11.
46. D. Kisailus and F. F. Lange, Growth of epitaxial GaN on LiGaO2 substrates via a reaction with ammonia, J. Mater. Res., 16 (2001) 2077-81.
47. M. Losurdo, D. Giuva, G. Bruno, S. Huang, T. H. Kim, and A. S. Brown, The surface modification and reactivity of LiGaO2 substrates, J. Cryst. Growth, 264, (2004) 139-49.
48. 陳彥名,“以分子束磊晶法於鋁酸鋰基板成長非極性氧化鋅磊晶之研究”,國立中山大學材料科學研究所碩士論文,(2012)
49. Z. X. Mei, X. L. Du, Y. Wang, Z. Q. Zeng, H. Zheng, J. F. Jia et al., Controlled growth of Zn-polar ZnO epitaxial film by nitridation of sapphire substrate, Appl. Phys. Lett., 86 (2005) 112111.
50. P. Wang, C. Jin, X. Wu, H. Zhan, Y. Zhou, H. Wang et al., Quality improvement of ZnO thin layers overgrown on Si(100) substrates at room temperature by nitridation pretreatment, AIP Adv., 2 (2012) 022139.
51. M. McLaurin, A. Hirai, E. Young, F. Wu, and J. S. Speck, Basal plane stacking-fault related anisotropy in X-ray rocking curve widths of m-plane GaN, Jpn. J. Appl. Phys., 47 (2008) 5429-31.
52. Y. M. Chen, T. H. Huang, T Yan, L. Chang, M. M. C. Chou, K. H. Ploog et al., Epitaxial growth of nonpolar and polar ZnO on γ-LiAlO2 (100) substrate by plasma-assisted molecular beam epitaxy, J. Cryst. Growth, 377 (2013) 82-7.
53. M. M. C. Chou, L Chang, D. R. Hang, C. Chen, D. S. Chang, and C. A. Li, Crystal growth of nonpolar m-plane ZnO on a lattice-matched (100) γ-LiAlO2 substrate, Cryst. Growth Des., 9 (2009) 2073-8.
54. M. M. C. Chou, D. R. Hang, C. Chen, and Y. H. Liao, Epitaxial growth of nonpolar m-plane ZnO (10-10) on large-size LiGaO2 (100) substrates, Thin Solid Films, 519 (2011) 3627-31.
55. L. C. Lem,”Spectroscopic studies of hydrogen dopants in ZnO crystals” Physics and advanced materials faculty of science, University of technology, Sydney.
56. D. Hull and D. J. Bacon, Introduction to dislocations, 4th ed., Oxford, Butterworth-Heinemann (2002).
57. C. N. Avram, M. G. Brik, and A. S. Gruia, Theoretical calculations of energy levels scheme of Cr3+ -doped LiAl5O8 spinel, Optoelectron Adv. Mat., 4 (2010) 1127-30.
58. A. Mogilatenko, W. Neumann, E. Richter, M. Weyers, B. Welickov et al., Mechanism of LiAlO2 decomposition during the GaN growth on (100) γ–LiAlO2, J. Appl. Phys., 102 (2007) 023519
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code