Responsive image
博碩士論文 etd-0713114-232511 詳細資訊
Title page for etd-0713114-232511
論文名稱
Title
錳矽鋼材的機械性質與顯微組織的研究
Mechanical Properties and Microstructure of Mn-Si Steels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
123
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-24
繳交日期
Date of Submission
2014-08-14
關鍵字
Keywords
加工硬化、沃斯田鐵、矽錳鋼材、機械性質、顯微組織
Mn-Si steels, microstructure, mechanical properties, austenite, work-hardening
統計
Statistics
本論文已被瀏覽 5663 次,被下載 159
The thesis/dissertation has been browsed 5663 times, has been downloaded 159 times.
中文摘要
本研究的目的是研究錳矽鋼的顯微組織與機械性質的關係,主要的方法是利用X光繞射分析、掃描式電子顯微鏡和電子背向散射繞射儀分析不同熱處理條件下錳矽鋼的顯微組織,以及利用拉伸實驗量測其機械性質,以明瞭顯微組織對機械性質的影響。實驗結果顯示,經由適當的熱處理,可以得到3~45 %的沃斯田鐵與肥粒鐵雙相組織,其強度與延伸率均隨沃斯田鐵體積分率增加而上升。在最佳退火條件下,鋼材會有低的降伏比(約70 %)和高的加工硬化率,得以延遲頸縮而得到25 %的延伸率及1.7 GPa抗拉強度。透過其加工硬化曲線可得知,鋼材在應變量約5 %時開始啟動應變誘發相變態,使加工硬化率快速上升,之後加工硬化率隨應變增加緩緩下降直到鋼材斷裂,因此可以得知其加工硬化的機制是來至於應變誘發麻田散鐵相變化。
Abstract
The current study investigated the mechanical properties and microstructure of two Mn-Si steels. The microstructure of the steels with different heat treatments was investigated by X-ray dirffraction (XRD), scanning Electron Microscope (SEM) and electron backscatter diffraction (EBSD). The mechanical properties were measured by tensile tests. The experimental results showed that 3~40 % austenite can be retained with a ferrite matrix in steels with optimal annealing condition. The steels exhibited a low yield ratio (~70%) and high work-hardening rate. Acoordinary, a total elongation of 25% is yield associated with a ultimate tensile strength as high as 1.7 GPa. The work-hardening rate increases rapidly after 5% strain followed by a slow decrease until necking. The high work-hardening rate is attributed to the strain-induced martensitic transformation.
目次 Table of Contents
摘要 I
Abstract ii
總目錄 iii
圖目錄 vi
第一章、前言 1
第二章、文獻回顧 2
第三章、實驗步驟 16
第四章、實驗結果 22
第五章、討論 37
第六章、結論 40
第七章、參考文獻 41
參考文獻 References
[1] M. De Meyer, D. Vanderschueren, and B.C. De Cooman, The Influence of the Substitution of Si by Al on the Properties of Cold Rolled C-Mn-Si TRIP Steels , ISIJ Int.,39 (1999) 813-22
[2] E.M. Bellhouse, and J.R. McDermid, Effect of Continuous Galvanizing Heat Treatments on the Microstructure and Mechanical Properties of High Al-Low Si Transformation Induced Plasticity Steels , Metall. Mater. Trans. A, 41A (2010) 1460-73
[3] P.J. Jacques, E. Girault, A. Mertens, B. Verlinden, J. Van Humbeeck, and F. Delannay, Bainite transformation of low carbon Mn–Si TRIP-assisted
multiphase steels: influence of silicon content on cementiteprecipitation and austenite retention , ISIJ Int. , 41 (2001)1068.
[4] Jody Shaw, Future Steel Vehicle Overview Report, (2011)
[5] E. Girault, A. Mertens, P. Jacques, Y. Houbaert, B. Verlinden, and J.V. Humbeeck, Comparison of the effects of silicon and aluminium on the tensile behaviour of multiphase trip-assisted steels , Scripta Mater., 44 (2001) 885-92
[6] W.C. Leslie, Iron and its dilute substitutional solid solutions , Metall. Trans., 3 (1972) 5-26
[7] I. Sawai, S. Uchida, and E. Kamisaka, 炭素鋼の残留オーステナイトの挙動と機械的性質, Tetsu-to-Hagané, 71 (1985) 1292.
[8] H. K. D. H. Bhadeshia, Worked examples in the Geometry of Crystals , 2nd ed., London, Inst. Metals, (2001)
[9] D.A. Porter, K. E. Easterling, Phase transformations in metals and alloys, 3rd ed., New York, Springer US, (1992) 384-5
[10] D.P. Koistinen and R.E. Marburger, A General Equation Prescribing the Extent of the Austenite-Martensite Transformation in Pure Iron-Carbon Alloys and Plain Carbon Steels , Acta.Metall., 7 (1959) 59-60
[11] A. Das, P. C. Chakraborti, S. Tarafder and H. K. D. H. Bhadeshia, Analysis of deformation induced martensitic transformation in stainless steels , Mater. Sci. Technol., 27 (2011) 366-70
[12] 王涵聖,沃斯田鐵在不銹鋼及合金鋼之Displactive相變態與其衍生之顯微組織研究,博士論文,台北,國立台灣大學材料科學與工程學研究所,(2005)
[13] A. Perlade, O. Bouaziz, Q. Furnemont,r, A physically based model for TRIP-aided carbon steels behaviour , Mater. Sci. Eng. A, 356 (2003) 145-52.
[14] B.C. De Cooman, P. Gibbs, S. Lee, and D. K. Matlock, Transmission Electron Microscopy Analysis of Yielding in Ultrafine-Grained Medium Mn Transformation-Induced Plasticity Steel , Metall. Mater. Trans. A, 44A (2013) 2563-72
[15] G. Krauss and A.R. Marder, A physically based model for TRIP-aided carbon steels behaviour , Metall. Trans., 2 (1971)2343-57
[16] L. Samek,E. De MOOR, J. PENNING and B.C. De Cooman, Influence of Alloying Elements on the Kinetics of Strain-Induced Martensitic Nucleation in Low-Alloy, Multiphase High-Strength Steels, Metall. Mater. Trans. A, 37A (2006) 109-124
[17] V. F. Zacky, E. R. Parker, D. Fahr, R. Busch, The enhancement of ductility in high-strength steels , ASM Trans Quart, 60 (1967) 252-9
[18] N.H. van Dijk, A.M. Butt, L. Zhao, J. Sietsma, S.E. Offerman, J.P. Wright et al, Thermal stability of retained austenite in TRIP steels studied by synchrotron X-ray diffraction during cooling , Acta Mater. , 53 (2005) 5439-47
[19] A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano, A. Charaï , Effect of the bainitic transformation temperature on retained austenite fraction and stability in Ti microalloyed TRIP steels , Mater. Sci. Eng. A , 518 ( 2009) 89-96
[20] A. Kammouni, W. Saikaly, M. Dumont, C. Marteau, X. Bano, A. Charaï , A methodology suitable for TEM local measurements of carbon concentration in retained austenite , Mater. Charact. , 59 (2008) 1307-11.
[21] D. Q. Bai, A. Di Chiro, S. Yue, Stability of Retained Austenite in a Nb Microalloyed Mn-Si TRIP Steel, Mater. Sci. Forum, 286 (1998) 253-62.
[22] K. K. Park, S. T. Oh, D. I. Kim, J. H. Han, et al., In situ deformation behavior of retained austenite in TRIP steel, Mater. Sci. Forum, 408 (2002) 571-6
[23] I. B. Timokhina, P. D. Hodgson, E. V. Pereloma, Effect of Microstructure on the Stability of Retained Austenite in Transformation Induced Plasticity Steels, Metall. Mater. Trans. A, 35 (2004) 2331-40.
[24] K. Sugimoto, M. Kobayashi, S. Hashimoto, Ductility and strain-induced transformation in a high-strength transformation-induced plasticity-aided dual-phase steel , ISIJ Int., 32 (1992) 1311-8.
[25] A. Misra, S. Sharma, S. Sangal, A. Upadhyaya, K. Mondal, Critical isothermal temperature and optimum mechanical behaviour of high Si-containing bainitic steels, Mater. Sci. Eng. A, 558 (2012) 725–9
[26] B. Seung Chul, K. Seongju, J. Young Sool and K. Ohjoon, Effects of Alloying Elements on Mechanical Properties and Phase Transformation of Cold Rolled TRIP Steel Sheets, ISIJ Int., 41 (2001) 290–7
[27] L. Chang Gil, K. Sung-Joon, O. Chang-Seok and L. Sunghak, Effects of Heat Treatment and Si Addition on the Mechanical Properties of 0.1 wt% C TRIP-aided Cold-rolled Steels, ISIJ Int., 42 (2002) 1162–8
[28] J. Chiang, B. Lawrence, J.D. Boyd and A.K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of TRIP steels , Mater. Sci. Eng. A, 528 (2011) 4516-21
[29] Y. Sakuma, O. Matsumura and H. Takechi, Mechanical properties and retained austenite in intercritically heat-treated bainite-transformed steel and their variation with Si and Mn additions , Metall. Trans. A, 22 (1991) 489-98
[30] H.C. Chen, K. Tomokiyo, H. Era and M. Shimizu, Mechanism of the Formation of Retained Austenite in High-Strength Cold-Rolled Steel Sheet Containing Silicon and Phosphorus, Technology Reports of the Kyusu University , 60 (1987) 43-49
[31] Georg Frommeyer, Udo Brüx and Peter Neumann, Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes, ISIJ Int., 43 (2003) 438–46
[32] P.J. Jacques, Transformation-induced plasticity for high strength formable steels, Curr. Opin. Solid State Mater. Sci., 8 (2004) 259-65
[33] S. Li, R. Zhu, I. Karaman, and R. Arroyave, Development of a kinetic model for bainitic isothermal transformation in transformation-induced plasticity steels, Acta Mater., 61 (2013) 2884-94.
[34] H. Bhadeshia, Thermodynamic analysis of isothermal transformation diagrams, Metal Sci., 16 (1982) 159-66
[35] P. Jacques, E. Girault, T. Catlin, N. Geerlofs, T. Kop, S. van der Zwaag et al, Bainite transformation of low carbon Mn–Si TRIP-assisted multiphase steels: influence of silicon content on cementite precipitation and austenite retention, Mater. Sci. Eng. A, A273-5 (1999) 475-9
[36] J. Lis, J. Morgiel and A. Lis , The effect of Mn partitioning in Fe–Mn–Si alloy investigated with STEM-EDS techniques , Mater. Chem. Phys. , 81 (2003) 466–8
[37] B.C. De Cooman, G. Paul, Lee Seawoong and David K. Matlock, Transmission Electron Microscopy Analysis of Yielding in Ultrafine-Grained Medium Mn Transformation-Induced Plasticity Steel , Metall. Mater. Trans. A, 44A (2013) 2563.
[38] J. Van Slycken, P. Verleysen , J. Degrieck , J. Bouquerel and B.C. De Cooman, Dynamic response of aluminium containing TRIP steel and its constituent phases , Mater. Sci. Eng. A, 460-1 (2007) 516–24
[39] J. Bouquerel, K. Verbeken and B.C. De Cooman, Microstructure-based model for the static mechanical behavior of multiphase steels , Acta Mater., 54 (2006) 1443-56
[40] J. Chiang, B. Lawrence, J.D. Boyd and A.K. Pilkey, Effect of microstructure on retained austenite stability and work hardening of TRIP steels, Mater. Sci. Eng. A, 528 (2011) 4516-21
[41] Z.Q. Liu, G. Miyamoto, Z.G. Yang and T. Furuhara, Direct measurement of carbon enrichment during austenite to ferrite transformation in hypoeutectoid Fe-2Mn-C alloys , Acta Mater. , 61 (2013) 3120-29
[42] 謝克昌,未發表數據。
[43] Z.H. Cai , H.Ding , R.D.K.Misra , H.Kong , H.Y.Wu , Unique impact of ferrite in influencing austenite stability and deformation behavior in a hot-rolled Fe–Mn–Al–C steel, Mater. Sci. Eng. A, 595 (2014) 86-91
[44] A. Bayram, A. Uguz, and M. Ula, Effects of Microstructure and Notches on the Mechanical Properties of Dual-Phase Steels, Mater. Charact. , 43 (1999) 259-69
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code