Responsive image
博碩士論文 etd-0713115-100614 詳細資訊
Title page for etd-0713115-100614
論文名稱
Title
外延生長TiO2/HfO2超晶格之結構與介電性質研究
Structures and dielectrics of sputtered epitaxial TiO2/HfO2 superlattices
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
70
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-28
繳交日期
Date of Submission
2015-08-28
關鍵字
Keywords
超晶格、介電常數、二氧化鈦、二氧化鉿、電子繞射圖、X光繞射
Dielectric Constant, XRD, TEM, HfO2, Superlattice, TiO2
統計
Statistics
本論文已被瀏覽 5714 次,被下載 191
The thesis/dissertation has been browsed 5714 times, has been downloaded 191 times.
中文摘要
本論文探討濺鍍在c面藍寶石(c-cut sapphire)基板的二氧化鈦與二氧化鉿超晶格結構與不同的週期厚度比例導致的介電係數之改變。以射頻磁控濺鍍機分別成長金紅石(rutile)(100)面二氧化鈦(TiO2)薄膜與二氧化鉿(HfO2),以X光繞射儀(θ-2θ、rocking curve、XRR與GIXRD)分析其結構,算出濺鍍速率後,再成長TiO2/HfO2雙層交疊為一周期,總共五個週期與十個週期的超晶格薄膜。用X光繞射儀了解多層膜組成超晶格結構後的變化,之後再從穿透式電子顯微鏡觀察內部原子排列方式。成長為超晶格薄膜後TiO2與HfO2晶格都產生變化,從TEM電子繞射圖與高解析度圖(HR)顯示HfO2跟隨TiO2以金紅石結構排列,因此在XRR的模擬中能看到HfO2的密度產生很大的變化。在10週期的TiO2/HfO2超晶格樣品TEM電子繞射圖發現TiO2孿生晶體(twinned crystals)繞射點,但在五週期的TiO2/HfO2超晶格樣品因為藍寶石基板與二氧化鈦間強交互作用力作用改變二氧化鈦結構,使二氧化鈦在靠近基板時成為單晶,遠離基板則產生孿生晶體。TiO2/HfO2超晶格樣品分為A系列(十個週期)與B系列(五個週期),A系列樣品直接在650度成長TiO2:HfO2超晶格在藍寶石基板,B系列樣品在藍寶石基板上攝氏550度環境成長一奈米二氧化鈦緩衝層,之後再於650度成長TiO2:HfO2多層膜。兩系列樣品各成長兩種周期比例,分別為1奈米TiO2與1奈米HfO2交疊為一週期(TiO2:HfO2-1:1)與3奈米二氧化鈦與1奈米二氧化鉿交疊為一週期(TiO2:HfO2-3:1)。
Abstract
RF magnetron sputtering has been used to deposit thin films of TiO2/HfO2 superlattices
in alternating sequence on c-oriented sapphire substrates using titanium, or titanium
dioxide, and Hafnium dioxide targets. The thin films thus obtained have higher
dielectric constants and better insulation properties. The dielectric characteristics were
studied on samples of different numbers of cycles and thickness ratios of the two oxides.
Two series of samples, classified as series-A for [(TiO21nm/HfO21nm)10cycles and
(TiO23nm/HfO21nm)10cycles], and as series-B for [(TiO21nm/HfO21nm)5cycles and
(TiO23nm/HfO21nm)5cycles]. X-ray diffractometry (XRD) and transmission electron
microscopy (TEM) have been conducted to examine the structural properties of the
samples in relation to the dielectric properties, and lock-in amplifier used to measure
the internal impedance of the samples from 0.1 Hz to 100kHz. Change of voltage as a
function of frequency was used to calculate the values the frequency dependence of
involved capacitance and inductance.
TEM electron diffraction patterns showed that the HfO2 layers are of a few
nanometer thick and grow epitaxially on the TiO2 thin film by assuming the same
crystal structure of the underlying TiO2 layer. Traditional wisdom suggests that TiO2
thin films grown on c-sapphire should at best be twinned, if epitaxial at all. However,
in this work, the structure of the obtained TiO2 was found to be epitaxial and twin-free.
This is interpreted as associated with the overall chemical bonding forces among the Ti,
O, and Al atoms of the TiO2 (011)-plane on sapphire (0001)-plane. This led to an ideal
epitaxy with orientation relations of (TiO2)(011)//Al2O3(0001), TiO2[010]// Al2O3
[1120] and TiO2[001]// Al2O3 [1010].
目次 Table of Contents
目錄
致謝............................................................................................................i
中文摘要...................................................................................................ii
英文摘要...................................................................................................iii
緒論............................................................................................................. 1
1-1 前言................................................................................................................ 1
1-2 材料基本介紹................................................................................................ 3
1-2-1 二氧化鈦.......................................................................................... 3
1-2-2 二氧化鉿.......................................................................................... 4
1-2-3 超晶格.............................................................................................. 5
第二章、 實驗儀器介紹以及基本原理..................................................................... 6
2-1 磁控濺鍍系統................................................................................................ 6
2-1-1 系統配置.......................................................................................... 7
2-1-2 濺鍍原理.......................................................................................... 7
2-2 X光繞射儀.................................................................................................... 9
2-2-1 布拉格繞射...................................................................................... 9
2-2-2 掃描模式介紹及原理.................................................................... 10
2-3 電子顯微鏡................................................................................................. 13
2-3-1 掃描式電子顯微鏡........................................................................ 13
2-3-2 穿透式電子顯微鏡........................................................................ 14
2-4 鎖相放大器................................................................................................. 14
第三章、 實驗設計.................................................................................................. 15
TiO2實驗參數.......................................................................................... 16
HfO2實驗參數.......................................................................................... 19
第四章、 實驗結果與分析....................................................................................... 22
4-1 樣品成長參數.............................................................................................. 22
4-2 XRD結果..................................................................................................... 23
θ-2θ............................................................................................................ 23
GIXRD...................................................................................................... 23
Rocking curve........................................................................................... 24
XRR........................................................................................................... 25
4-3 TEM和SEM結果....................................................................................... 30
SEM結果.................................................................................................. 30
A系列TEM結果..................................................................................... 31
A系列結果分析....................................................................................... 37
B系列TEM結果..................................................................................... 39
B系列結果分析....................................................................................... 47
4-4 結構分析...................................................................................................... 48
4-5 電性量測結果.............................................................................................. 51
電性量測分析........................................................................................... 52
第五章、 結論........................................................................................................... 54
參考文獻................................................................................................. 55






圖目錄
圖1-2-1(a) 介電常數與能隙表…………………………………...………..……….. 3
圖1-2-1(b) 能隙對介電常數分布圖…………………………………...………...…. 3
圖1-2-2(a)二氧化鈦的共邊八面體示意圖…………………………….…………… 4
圖1-2-2(b) rutile二氧化鈦結構…………………………………………………….. 4
圖1-2-3 二氧化鉿單斜結構……………………………………….……………….. 4
圖2-1-1 電子運動軌跡與電磁場方向……………………………….…………….. 6
圖2-1-2 磁控濺鍍系統內配置……………………………………………….…….. 7
圖2-1-3 電漿激發示意圖………………………………………………….……….. 8
圖2-1-4 電漿游離示意圖…………………………………………………………... 8
圖2-2-1 布拉格繞射圖……………………………………………………………... 9
圖2-2-1 XRD機台設置示意圖…………………………………………...……….. 10
圖2-2-2 θ-2θ掃描………………………………………………………………….. 10
圖2-2-3 掠角X光繞射…………………………………………………………… 10
圖2-2-4 X光反射率示意圖………………………………………………………... 11
圖2-2-5 多層膜影響反射位置……………………………………………………. 11
圖2-2-5 φ軸掃描…………………………………………………………………. 12
圖2-2-6 Rocking curve模式示意圖……………………………………………….. 12
圖2-3-1 掃描式電子顯微鏡………………………………………………………. 13
圖2-3-2 SEM成像示意圖……………………………………………………...….. 13
圖2-3-3 穿透式電子顯微鏡………………………………………………………. 14
圖2-3-4 TEM成像示意圖…………………………………………………………. 14
圖3-1 實驗流程……………………………………………………………………. 15
圖3-2(a) A系列樣品示意圖………………………………………………………. 16
圖3-2(b) B系列樣品示意圖………………………………………………………. 16
圖3-3 TiO2/c-sappire成長溫度變化θ-2θ 掃描………………………………….. .17
圖3-4 650oC TiO2 GIXRD…………………………………………………………. 17
圖3-5 650oCTiO2 rocking curve掃描結果………………………………………… 17
圖3-6 HfO2 θ-2θ掃描結果………………………………………………………… 19
圖3-7 HfO2 GIXRD掃描結果…………………………………………………….. 19
圖3-8 HfO2 rocking curve掃描結果………………………………………………. 19
圖3-9 電性實驗流程示意圖………………………………………………………. 21
圖3-10 電性量測線路示意圖……………………………………………………... 21
圖4-2-1 (a) TiO2:HfO2 – 1:1_θ-2θ scan………………………………...………….. 23
圖4-2-1 (b) TiO2:HfO2 – 3:1_θ-2θ scan……………………………………………. 23
圖4-2-2 (a) TiO2:HfO2 – 1:1_GIXRD……………………………………………… 23
圖4-2-2 (b) TiO2:HfO2 – 3:1_GIXRD……………………………………………… 23
圖4-2-3 (a) B series-1:1_rocking a-axis……………………………………………. 24
圖4-2-3 (b) B series-1:1_rocking m-axis………………………………………...… 24
圖4-2-4 (a) B series-3:1_rocking a-axis……………………………………………. 24
圖4-2-4 (b) B series-3:1_rocking m-axis…………………………………………... 24
圖4-2-5 (a) TiO2:HfO2 – 1:1……………………………………………………. 25
圖4-2-5 (b) TiO2:HfO2 – 3:1……………………………………………………. 25
圖4-2-6 改變週期數之XRR趨勢圖……………………………………………… 29
圖4-2-7 改變每層比例之XRR趨勢圖………………………………………...… 29
圖4-2-8 改變TiO2密度XRR趨勢圖…………………………………………….. 29
圖4-2-9 改變HfO2密度XRR趨勢圖…………………………………………….. 29
圖4-2-10 改變每層粗糙度之XRR趨勢圖………………………………………. 29
圖4-3-1 A系列T:H-1:1 倍率x5.2k…………………………………………… 30
圖4-3-2 A系列T:H-1:1 倍率x52k…………………………………………….. 30
圖4-3-3 B系列T:H-1:1 倍率x5.2k…………………………………………… 30
圖4-3-4 B系列T:H-1:1 倍率x52k…………………………………………….. 30
圖4-3-5 A系列 T:H-1:1 倍率x285k……………………………………………... 31
圖4-3-6 A系列T:H-1:1薄膜與基板介面D.P. …………………………………... 31
圖4-3-7 A系列 T:H-1:1 HR x590k……………………………………………….. 31
圖4-3-8 HR局部放大圖…………………………………………………………… 31
圖4-3-9 c面藍寶石基板電子繞射圖……………………………………………... 32
圖4-3-10分析區域示意圖………………………………………………………… 32
圖4-3-11(a) 區域1繞射點放大圖………………………………………………... 32
圖4-3-11(b) 區域1基板c軸方向強度分佈…………………….……………..….32
圖4-3-12(a) 區域2繞射點放大圖……………………………….……………….. 33
圖4-3-12(b) 區域2基板c軸方向強度分佈…………………….……………….. 33
圖4-3-13(a) 區域3繞射點放大圖……………………………….……………….. 33
圖4-3-13(b) 區域3基板c軸方向強度分佈…………………….……………….. 33
圖4-3-14 A系列 T:H-3:1 倍率x145k…………………………….……………… 34
圖4-3-15 A系列T:H-3:1薄膜與基板介面D.P. ………………….……………… 34
圖4-3-16 A系列 T:H-3:1 HRx400k………………………………………………. 34
圖4-3-17 HR局部放大圖………………………………………………………….. 34
圖4-3-18分析區域示意圖………………………………………………………… 35
圖4-3-19(a) 區域1繞射點放大圖…………………………………………...…… 35
圖4-3-19(b) 區域1基板c軸方向強度分佈………………………..….………… 35
圖4-3-20(a) 區域2繞射點放大圖……………………………….……………..… 36
圖4-3-20(b) 區域2基板c軸方向強度分佈…………………….…………..…… 36
圖4-3-21(a) 區域3繞射點放大圖…………………………….………..………… 36
圖4-3-21(b) 區域3黃線方向強度分佈…………………………..….…………… 36
圖4-3-22 B系列 T:H-1:1 倍率x285k……………………….…………………… 39
圖4-3-23 B系列 T:H-1:1 倍率x690k……………….…………………………… 39
圖4-3-24 B系列 T:H-1:1 HRx790k………………………………………………. 39
圖4-3-25 HR局部放大圖………………………………………………………….. 39
圖4-3-26 zone axis is m-axis……………………………………………….……… 40
圖4-3-27 zone axis is a-axis………………………………………………………... 40
圖4-3-28分析區域示意圖………………………………………………………… 41
圖4-3-29(a)區域1繞射點放大圖……………………………………………….… 41
圖4-3-29(b)區域1基板c軸方向強度分佈……………………………...……..… 41
圖4-3-30 (a)區域2繞射點放大圖………………………………………………… 42
圖4-3-30(b)區域2基板c軸方向強度分佈……………………………….……… 42
圖4-3-31(a) 區域3繞射點放大圖……………………………………….……..… 42
圖4-3-31(b) 區域3基板c軸方向強度分佈………………………………...…… 42
圖4-3-32 B系列 T:H-3:1 倍率x285k……………………………………….…… 43
圖4-3-33 B系列 T:H-3:1 倍率x450k……………………………………….…… 43
圖4-3-34 B系列 T:H-3:1 HRx450k………………………………………….…… 43
圖4-3-35 HR局部放大圖……………………………………………….……….… 43
圖4-3-36 zone axis is m-axis………………………………………….……….…… 44
圖4-3-37 zone axis is a-axis……………………………………………………...… 44
圖4-3-38處理區域示意圖………………………………………………………… 45
圖4-3-39(a)區域1繞射點放大圖…………………………………………….…… 45
圖4-3-39(b)區域1基板c軸方向強度分佈……………………………….……… 45
圖4-3-40(a)區域2繞射點放大圖……………………………………………….… 46
圖4-3-40(b)區域2基板c軸方向強度分佈………………………………….…… 46
圖4-3-41(a)區域3繞射點放大圖……………………………...……………….… 46
圖4-3-41(b)區域3基板c軸方向強度分佈…………………………………….… 46
圖5-1 TiO2/HfO2與基板磊晶關係示意圖…………………………………....…… 49
圖5-2 缺陷影響rutile二氧化鈦晶格示意圖…………………………...…...…… 50
圖4-5-1 DC量測薄膜電阻圖……………………………………………………… 51
圖4-5-2 電阻兩端電壓對頻率關係圖(實部)…………………………………...… 51
圖4-5-3電阻兩端電壓對頻率關係圖(虛部)……………………………………… 51
圖4-5-4電阻兩端電壓對頻率關係圖(總電壓)…………………………………… 51
圖4-5-5 相位角度對頻率變化圖……………………………………………….… 51
圖4-5-6 樣品內部模擬電路W…………………………………………………… 53
圖4-5-7 樣品內部模擬電路X………………………………………….………… 53
圖4-5-8 樣品內部模擬電路Y…………………………………………….……… 53
圖4-5-9 樣品內部模擬電路Z………………………………………………..…… 53
圖4-5-10 TiO2/TiOX超晶格介面磁性研究結果…………………………...……… 53





表目錄
表3-1 Sputter成長TiO2參數……………………………………………………… 16
表3-2 (a) TiO2成長時間30分鐘XRR模擬結果………………………………… 18
表3-3 (b) TiO2成長時間1小時XRR模擬結果…………………………………. 18
表3-4 HfO2成長時間1小時XRR模擬結果…………………………………….. 20
表4-2-1 X’pert-Reflectivity模擬模型參數………………………………………... 25
圖表4-2-2 B系列週期比例1:1樣品XRR模擬資訊……………………………. 27
圖表4-2-3 B系列週期比例1:1樣品XRR模擬資訊…………………………… 27
表4-3-1 TiO2晶格常數計算表………………………………………………….…. 40
表4-3-2 TiO2晶格常數計算表………………………………………………….…. 40
表4-3-3 TiO2晶格常數計算表…………………………………………….………. 44
表4-3-4 TiO2晶格常數計算表………………………………………………….…. 44
表5-1 體積與密度表………………………………………………………………. 49
表5-2單位晶胞內增加原子數對應密度表………………………………………. 49
參考文獻 References
[1] Shichman, H. and Hodges, D.. (1968). "Modeling and simulation of insulated-gate field-effect transistor switching circuits." IEEE Journal of Solid-State Circuits, 3(3): 285-289.
[2] Seo, M., Kim, S. K.. (2010). "Permittivity Enhanced Atomic Layer Deposited HfO2Thin Films Manipulated by a Rutile TiO2Interlayer." Chemistry of Materials 22(15): 4419-4425.
[3] Roy, A. Mohan, Saraswat, K., Nikonov, D., & Nishi, Y.. (2012). "Tunneling contacts for novel semiconductor devices."
[4] Monaghan, S., P. K. Hurley.. (2009). "Determination of electron effective mass and electron affinity in HfO2 using MOS and MOSFET structures." Solid-State Electronics 53(4): 438-444.
[5] Hurley, P. K., A. Negara, et al.. (2009). "The Influence of Oxide Charge on Carrier Mobility in HfO2/TiN Gate Silicon MOSFETs." ECS Transactions 19(2): 379-391.
[6] Shang, G., Peacock, P.W. and Robertson, J.. (2004). Applied Physics Letters 84 (1), 106-108.
[7] Huang, A. P., Chu, Paul K. and Yang, Z. C.. (2010). "Hafnium-based high-k gate dielectrics." INTECH Open Access Publisher.
[8] Chen, F., Bin, X., Hella, C., Shi, X., Gladfelter, W. L. and Campbell, S. A.. (2004). "A study of mixtures of HfO2 and TiO2 as high-k gate dielectrics." Microelectronic. Eng. 72, 263–266.
[9] Li, G. X., Chen, X. F.. (2010). "HfO2-TiO2 Ultra-Thin Gate Dielectric by RF Sputtering." Ferroelectrics 410(1): 129-136.
[10] Cisneros-Morales, M. C. and Aita, C. R.. (2008). "Mixed cation phases in sputter deposited HfO2–TiO2 nanolaminates." Applied Physics Letters 93(2): 021915.
[11] Peddada, S. R., Robertson, I. M.. (1997). "Growth of Ti thin films on sapphire substrates." Journal of Materials Research 12(07): 1856-1865.
[12] Uchida, Hiroshi. (2012). "Dielectric property of titanium dioxide thin films fabricated by supercritical fluid deposition."
[13] Robertson, J.. (2004). "High dielectric constant oxides." The European Physical Journal - Applied Physics 28(03): 265-291.
[14] Nowotny, Janusz. (2011). "Oxide Semiconductors for Solar Energy Conversion: Titanium Dioxide." CRC Press. p. 156. ISBN 9781439848395.
[15] Goresy, El., Chen, M., Dubrovinsky, L., Gillet, P., Graup, G.. (2001). "An ultradense polymorph of rutile with seven-coordinated titanium from the Ries crater." Science 293 (5534): 1467–70. doi:10.1126/science.1062342. PMID 11520981.
[16] Greenwood, Norman N., Earnshaw, Alan. (1984). "Chemistry of the Elements. Oxford: Pergamon Press." p. 1117–19. ISBN 0-08-022057-6.
[17] Miyata, Noriyuki. (2012). "Study of direct-contact HfO2/Si interfaces."
Materials 5.3: 512-527.
[18] Bersch, Eric. (2008) "Band offsets of ultrathin high-k oxide films with Si". Phys. Rev. B 78: 085114. doi:10.1103/PhysRevB.78.085114.
[19] Miikkulainen, V.. (2013). "Crystallinity of inorganic films grown by atomic layer deposition: Overview and general trends". Journal of Applied Physics 113: 021301. doi:10.1063/1.4757907.
[20] Choi, J.H.. (2011). "Development of hafnium based high-k materials—A review". Materials Science and Engineering: R 72 (6): 97–136.
[21] Grahn, H.T.. (1995) "Semiconductor Superlattices", World Scientific.
[22] Morten Jagd Christensen. (1997). "Epitaxy, Thin Films and Superlattices". Riso National Laboratory.
[23] 馮端. (1998). "固體物理學大辭典". 建宏出版社. p.21-22.
[24] Behrisch, R.. (1981). "Sputtering by Particle Bombardment." Springer, Berlin. ISBN 978-3-540-10521-3.
[25] Bragg, W.L., Phillips, D.C. and Lipson, H.. (1992). "The Development of X-ray Analysis." New York: Dover. ISBN 0-486-67316-2.
[26] Shafranovskii, I.I., and Frank‐Kamenetskii, V.A.. (1988). "Russian and soviet publications on crystal growth." Crystal Research and Technology 23.8: 1053-1057.
[27] Als-Nielsen, J. and McMorrow, D.. (2011). "Kinematical scattering I: non-crystalline materials." Elements of Modern X-ray Physics, John Wiley & Sons, Inc.: 113-146.
[28] Parratt, L.G.. (1954). "Surface Studies of Solids by Total Reflection of X-Rays." Physical Review 95(2): 359-369.
[29] Zhou, W., Deng, H.. (2015). "Microstructure tuning and magnetism switching of ferroelectric barium titanate." Materials Characterization 107(0): 1-6.
[30] Batakrushna Santara. (2014). "Microscopic origin of lattice contraction and expansion in undoped rutile TiO2 nanostructures." J. Phys. D: Appl. Phys. 47 215302.
[31] Wadekar, P. V., Hsieh, W. C.. (2015). "Mixed-valence magnetism in TiO2/TiOx superlattices." APS March Meeting.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code