Responsive image
博碩士論文 etd-0713115-123001 詳細資訊
Title page for etd-0713115-123001
論文名稱
Title
露點對矽鋁相變誘發塑性鋼材熱浸鍍鋅性影響的研究
Effect of dew point on galvanizability of Si-Al added transformation induced plasticity steels
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
109
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-07
繳交日期
Date of Submission
2015-08-17
關鍵字
Keywords
相變誘發塑性鋼、露點、表陎選擇性氧化物、熱浸鍍鋅、鐵鋁層
transformation-induced plasticity steel, surface oxides, dew point, Fe-Al inhibition layer, hot-dip galvanizing
統計
Statistics
本論文已被瀏覽 5647 次,被下載 221
The thesis/dissertation has been browsed 5647 times, has been downloaded 221 times.
中文摘要
本研究針對兩種錳鋁矽相變誘發塑性鋼材:TRIP A和TRIP B,探討成份和退火的露點對冷軋退火後,表面形成的選擇性氧化物的種類、形貌和分佈的影響。以及氧化物對後續熱浸鍍時鐵鋁阻障層形成的影響,以釐清露點對錳鋁矽鋼材熱浸鍍鋅性影響的原因。鋼材在冷軋後分別在露點-70 oC、-30 oC與0 oC的保護性氣氛下,在600 oC ~ 800 oC退火,再浸入鋁含量0.16 wt%的鋅浴中浸鍍。本研究使用掃描式電子顯微鏡觀察氧化物與鐵鋁阻障層的形貌與分佈、以X光光電子能譜儀分析氧化物的組成、以穿透式電子顯微鏡分析氧化物的種類與分佈。
分析結果顯示:TRIP A鋼材在退火後,表面形成的氧化物包含少量的MnO,以及一層非晶質xMnO.ySiO2.Al2O3 (y=0.2~1.7)氧化物,以及其間夾雜極微細結晶態的Al2O3。在露點0 oC時,MnO的平均厚度為15 ~ 30 nm,而在露點-70 oC時,MnO的平均厚度則為10 ~ 15 nm,此外,表面的非晶質氧化物中Al2O3的含量隨露點下降而增加。TRIP B鋼材在露點0 oC退火後,MnO的平均厚度為60 ~ 70 nm,而在露點-70 oC退火,MnO的平均厚度則為25 ~ 30 nm,此外,表面的非晶質氧化物在高露點時以xMnO.ySiO2.Al2O3 (y=0.9~1.4)氧化物為主,當露點降至-70 oC時則以非晶質Al2O3為主。
在鋁含量0.16 wt%之鋅浴中,鍍鋅後觀察其外觀,TRIP A鋼材在露點0 oC退火後,鍍層無未鍍點,且介面鐵鋁層覆蓋率約82%,鐵鋅相生成較少。在露點-30 oC退火後,鍍層有許多未鍍點,且鐵鋁層覆蓋率僅約43%,鐵鋅相生成較多。而在露點-70 oC退火後,鍍層幾乎完全無法附著。造成鋼材鍍鋅性好壞的原因為鋼材在退火後,表面所形成的氧化物的種類而非其厚度。TRIP A鋼材在高露點退火後,雖然形成15-30 nm的MnO,但是無礙於其熱浸鍍鋅性,但是在低露點下所形成的Al2O3含量較高的非晶質氧化物,卻對其熱浸鍍鋅性有顯著的影響。TRIP B鋼材在露點0 oC退火後,鍍層有未鍍點產生,鐵鋁層覆蓋率為61%,鐵鋅相生成很少,在露點-30 oC退火後,鍍層也有許多未鍍點,鐵鋁層覆蓋率僅約32%,鐵鋅相生成較多,而在露點-70 oC退火後,鍍層外觀很差,只鍍覆一點點面積,絕大部分都還是沒鍍上去。TRIP B鋼材在高露點退火後,表面形成較厚的MnO和非晶質xMnO.ySiO2.Al2O3 (x=0.2~0.4, y=0.9~1.4)氧化物,由於MnO厚度已超過鋅浴中鋁可以有效還原的程度,因此介面鐵鋁相已無法大量形成,導致鍍鋅性惡化,在低露點下幾乎都是非晶質Al2O3。綜合前面結果顯示此此薄膜狀的非晶質Al2O3會造成鋼材鍍鋅性大幅惡化,整體來說TRIP A和TRIP B鋼材在高露點的退火氣氛下,鍍鋅結果都比低露點來的好。
Abstract
Two Mn-Si-Al added transformation-induced plasticity steels, TRIP A and TRIP B, were studied to clarify the effect of dew point during annealing on the selective oxidation and galvanizability in hot-dipping. Three dew point of -70 oC, -30 oC and 0 oC were used. Samples were analyzed by scanning electron microscope (SEM), for the morphology and distribution of oxides and Fe-Al inhibition crystals. The chemical characteristics of the oxides were analyzed by X-ray photoelectron spectroscopy (XPS). The crystallivity, morphology and composition of the oxides were studied by transmission electron microscope (TEM).
Results indicated that the surface of TRIP A was covered by MnO and complex oxide containing Mn, Al and Si after it was annealed at a high dew point of 0 oC. The quantity of MnO increased with increasing the annealing temperature from 650 oC to 700 oC, but decreased dramatically at 800 oC. Accordingly, the surface oxides were composed of roughly equal quantities of complex oxide, enriched with Si and Al, and MnO. Decreasing the dew point to -70 oC, the surface oxides are mainly complex oxides with a small quantity of MnO whose fraction decreased with increasing the annealing temperature. At 800 oC, a large amount of SiO2 was also formed on the surface. TEM analyses showed that the complex oxide is amorphous with nano-sized -Al2O3 distributed throughout the amorphous oxide. The Mn and Si contents in the complex oxide decreased with decreasing the dew point.
The surface oxides form on the surface of TRIP B annealed at a high dew point of 0 oC were mainly MnO associated with a small amount of complex oxide. At dew point of -70 oC, the surface oxides were still MnO dominated as the steels were annealed at 650 and 700 oC. However, The complex became the major oxide formed on the surface at 800 oC. In addition, the Mn conten in the complex oxide also decreased dramatically. The complex oxide remained as amorphous with nano-sized -Al2O3 precipitated in it.
The TRIP A steel possessed a good galvanizability as hop-dipped in a 0.16 wt% Al bath after annealed at 800 oC at 0 oC dew point. Some bared spots were observed in the coating as the steel was annealed at -30 oC dew point, whereas the sample was not wetted to Zn after annealed at a dew point of -70 oC. For TRIP B, bared spots could not be avoided even whae the steel was annealed at a dew point of 0 oC. The coatability became worse as the annealing dew point decreased.
According to the above results, it is concluded that a layer of 50 nm thick MnO formed on the steel surface is not harmful for galvanizing in a 0.16 wt% bath. However, a layer of amorphous complex oxide of 30 nm in thickness can totally inhibit the formation of Fe-Al compound. The Zn is not wetted to the steel surface accordingly. Limited coatability can be obtained for steels covered by a mixed layer of MnO and complex oxide. The coatability gets worse as the area fraction of the complex oxide increases.
目次 Table of Contents
論文審定書 i
誌謝 ii
摘 要 iii
英文摘要 v
總目錄 viii
圖目錄 x
表目錄 xiv
第一章、前言 1
第二章、文獻回顧 3
2.1先進高強度鋼的發展 3
2.1.1 相變誘發塑性鋼 (TRIP鋼) 4
2.2熱浸鍍鋅製成的發展 4
2.2.1熱浸鍍鋅防蝕的原理 4
2.2.2 連續式熱浸鍍鋅製程 5
2.2.3熱浸鍍鋅鋼材的發展與現況 6
2.3選擇性氧化 7
2.3.1氧化反應熱力學計算 7
2.3.2外氧化與內氧化 (氧分壓與露點) 8
2.3.3 Mn-Si TRIP鋼材的選擇性氧化物 9
2.3.4 Mn-Si-Al TRIP鋼材的選擇性氧化物 10
2.4熱浸鍍鋅鍍層結構 11
2.4.1鋅浴鋁含量對鍍層結構的影響 11
2.4.2反應的潤濕作用 12
2.4.3鋁熱還原反應 13
2.5分析技術的原理 15
2.5.1 X光光電子能譜儀表面分析 15
2.5.2掃描式電子顯微鏡表面金相分析 17
第三章、實驗方法 18
3.1試片準備 18
3.1.1試片退火處理 18
3.1.2鍍鋅試片處理 18
3.2 X光光電子能譜儀 (XPS)分析 19
3.3掃描式電子顯微鏡 (SEM)分析 20
3.4穿透式電子顯微鏡 (TEM)分析 20
第四章、實驗結果與討論 21
4.1表面氧化物分析 21
4.1.1 TRIP A鋼材 21
4.1.2 TRIP B鋼材 25
4.2熱浸鍍鋅 29
4.2.1 TRIP A鋼材的鍍鋅層外觀 29
4.2.2 TRIP B鋼材的鍍鋅層外觀 29
4.2.3鐵鋁相XPS分析 30
4.2.4鐵鋁相SEM分析 31
4.2.5鐵鋅相SEM分析 32
4.2.6討論 34
第五章、結論 37
第六章、參考文獻 39
參考文獻 References
1. J.S. Yu, J.X. Zhang, J.S. Wu, J.L. Liu, J.G. Chen, “The overview of the coating performance of galvanized sheet applied in automobile”, Phys. Test. Chem. Anal. A, 41 (2005) 325-328.
2. J. Bian, Y. Zhu, X.H. Liu, G.D.Wang, “Development of hot dip galvanized steel strip and its application in automobile”, J. Iron Steel Res. Int., 13 (2006) 47-50.
3. A.R. Marder, “The metallurgy of zinc-coated steel”, Prog. Mater. Sci., 45 (2000) 191-271.
4. M. Guttmann, “Diffusive phase transformation in hot dip galvanizing”, Mater. Sci. Forum, 155-156 (1994) 527-548.
5. C.E. Jordan, A.R. Marder, “Morphology development in hot-dip galvanneal coatings ”, Metall. Mater. Trans. A , 25 (1994) 937-947.
6. E. McDevitt, Y. Morimoto, M. Meshii,“Characterization of the Fe-Al interfacial layer in a commercial hot-dip galvanized coating”, ISIJ Int., 37 (1997) 776-782.
7. P. Perrot, J.C. Tissier, J.Y. Dauphin,“Stable and metastable equilibria in the
Fe±Zn±Al system at 450oC”, Z. Metallkd., 83 (1992) 786-790.
8. R. Kuziak, R. Kawalla, S. Waengler,“Advanced high strength steels for automotive industry: a review”, Arch. Civ. Mech. Eng, 8 (2008) 103-117.
9. Matlock, K. David, Speer, G. John, “Processing opportunities for new advanced high-strength sheet steels”, Mater. Manuf. Processes, 25 (2010) 7-13.
10. R. Khondlker, A. Mertens, J.R. McDermid, “Effect of annealing atmosphere on the galvanizing behavior of a dual-phase steel”, Mater. Sci. Eng. A, 463 (2007) 157-165.
11. P. Drillet, Z. Zermout, D. Bouleau, J. Mataigne, S. Claessens, “Selective oxidation of high Si, Mn and Al steel grade during recrystallization annealing, and steel/Zn reactivity”, Proceeding of the 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, IL, USA, April 4-7, (2004) 1123-1134.
12. E.M. Bellhouse , A.I.M. Mertens , J.R. McDermid, “Development of the surface structure of TRIP steels prior to hot-dip galvanizing”, Mater. Sci. Eng. A, 463 (2007) 147–156.
13. 郭宥良。紅外線退火對中錳含量鋼材之組織與拉伸性質的影響,國立中山大學材料與光電科學學系碩士學位論文。(2013)。
14. V. F. Zacky, E. R. Parker, D. Fahr, R. Busch,“The enhancement of ductility in high strength steel”, ASM. Trans. Quart., 60 (196) 252-259.
15. “ULSAB-AVC body structure materials”,Technical transfer dispath NO.6, world steel association, (2001).
16. Y. Zhao, Z. Hu, Y. Li,“Research and process of high strength steels for automotive use”, Journal of Guangxi University (Nat. Sci. Ed), 34 (2009) 419.
17. D. Huin, P. Flauder, J.B. Leblond, “Numerical simulation of internal oxidation of steels during annealing treatments”, Oxid. Met., 64 (2005) 131-167.
18. R.T. DeHoff,“Thermodynamics in materials science”, 2nd ed., (2006) 326.
19. David R.Gaskell。蔡希杰譯。材料熱力學。出版,台北:偉明。(2003)。433-440頁。
20. D. Loison, D. Huin , V. Lanteri, J.P. Servais, and R. Cremer, “Selective oxidation of Fe-Mn alloy:Surface characterization and modelling”, Proceeding of the 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Brussels, Belgium, June 26-28, (2001) 203-209.
21. K.K. Wang, C.W. Hsu, L. Chang, D. Gan, T.R. Chen, K.C Yang, “Study of
selective oxidation behavior of a 1.2Si-1.5Mn TRIP Steel during intercritical annealing”, J. Electrochem. Soc., 159 (2012) 561-570.
22. J. Mahieu, S. Claessens, B.C. De Cooman and F. Goodwin,“Surface and Sub-surface Characterization of Si-Al and P-alloyed TRIP-aided steel”, Proceeding of the 5th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Brussels, Belgium, June 26-28, (2001) 644-651.
23. N.Y. Tang,“Determination of liquid-phase boundaries in Zn-Fe-Mx systems”, J. Phase Equilib., 21 (2000) 70-77.
24. J.I. Inagaki, M. Sakuria, T. Watanabe,“Alloying reactions in hot dipping
galvanizing and galvannealing process”, ISIJ Int., 35 (1995) 1388-1393.
25. A. Nishimoto, J.I. Inagaki, K. Nakaoka , “Effect of surface microstructure and chemical compositions of steels on Formation of Fe-Zn compounds during continuous galvanizing”, ISIJ Int., 26 (1986) 807-813.
26. M. Gattmann, Y. Lepretre, A. Aubry, M.J. Rochi, T. Moreau, P. Drillet, J.M.
Mataigne, H. Baidin,“Mechanisms of the galvanizing reaction.Influence of Ti and P contents in steel and of its surface microstructure after annealing”, Chicago, USA, September 17-21, (1995) 295-207.
27. K.C. Yang, L.W Chang,“Enhanced the hot-dip galvanizability of dual-phase steels by the suppression and reduction of selective surface oxide during different annealing atmosphere”, China Steel Tech. Rep., (2007) 1-20.
28. J. Mahieu, S. Claessens, B.C. De Cooman,“Galvanizability of high-strength steels for automotive applications”, Metall. Mater. Trans. A , 32A (2001) 2905-2908.
29. I. Cvijovic, I. Parezanovic , M. Spiegel,“Influence of H2–N2 atmosphere
composition and annealing duration on the selective surface oxidation of
low-carbon steels”, Corros. Sci., 48 (2006) 980–993.
30. X.S Li, S.I. Baek, C.S. Oh, S.J Kimb, Y.W. Kim,“Dew-point controlled
oxidation of Fe–C–Mn–Al–Si–Cu transformation-induced plasticity-aided
steels”, Scripta Mater., 59 (2008) 290–293.
31. S. Frenznick, D. Borissov, and M. Rohwerder,“Fundamental investigation of the effect of oxides on the reaction kinetics during hot dip galvanizing”, Proceeding of the 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan, November 18-22, (2007) 444-447.
32. E. Hamada, M. Nagoshi, , K. Sato, M. Sakurai,“Initial stage Fe-Zn reaction during got dip galvanizing of Si-added steel”, Proceeding of the 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Osaka, Japan, November 18-22, (2007) 482-486.
33. S. Jr. Feliu, M.L. Pe´rez-Revenga,“Effect of alloying elements (Ti, Nb, Mn and P) and the water vapour content in the annealing atmosphere on the surface of composition interstitial-free steels at the galvanising temperature,” Appl. Surf. Sci., 229 (2004) 112–123.
34. E.M. Bellhouse, and J.R. McDermid,“Analysis of the Fe-Zn interface of
galvanized high Al-low Si TRIP steels”, Mater. Sci. Eng. A, 491 (2008) 39-46.
35. L. Bordignon, G. Angeli, H. Bolt, R. Hekkens, W. Mascheck,“Enhanced hot dip galvanising by controlled oxidation in the annealing furnace”, 44 th MWSP Conf. Proc., (2002) 833-834.
36. E. McDevitt, Y. Morimoto, and M. Meshii, “Characterization of the Fe-Al
interfacial layer in a commercial hot-dip galvanized coating”, ISIJ Int., 37 (1997) 776-782.
37. M.S. Kodras, P. Niessen, “Silicon-induced Destabilization of Galvanized Coating in the sandelin Peak Region”, Metallography , 22 (1989) 253-267.
38. P. Drillet, Z. Zermount, D. Bouleau, J. Mataigne, S. Claessens, Proceeding of the 6th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Chicago, IL, USA, April 4-7, (2004) 1123.
39. M.S. Kim, J.H. Kwak, J.S. Kim, Y.H. Liu, N. Gao, and N.Y. Tang,“Selective oxidation and reactive wetting during galvanizing of a CMnAl TRIP-assisted steel”, Metall. Mater. Trans. A, 40A (2009) 1903.
40. R. Kavitha, A. Mertens, and J.R. McDermid, “On the in-situ aluminothermic reduction of manganese oxides in continuous galvanizing baths”, Proceedings of the 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet, Genova, Italy, June 21-24, (2011) 1243.
41. L. Cho, S.J. Lee, M.S. Kim, Y.H. Kim, B.C. De Cooman,“Influence of gas atmosphere dew point on the selective oxidation and the reactive wetting during hot dip galvanizing of CMnSi TRIP steel”, Metall. Mater. Trans. A, 44A (2013) 362.
42. Y.F. Gong, T.J. Song, H.S. Kim, J.H. Kwak, and B.C. DeCooman, Proceedings of the Asia Pacific Galvanizing Conference, Jeju, Korea, The Corrosion Science Society of Korea, (2009) paper no. B-15.
43. 葉君棣、陳志堅。X射線光電子分光儀應用手冊。(1983)。1-5頁。
44. J.C. Vickerman,“Surface analysis: the principal techniques”, 1st ed., (1997) 43-113.
45. J.I. Goldstein, D.E. Newbury, P. Echlin,“Scanning Electron Microscopy and X-Ray Microanalysis”, 3rd ed., (2003) 21-25.
46. 許瓊文。未發表之實驗數據。中山大學材料與光電科學學系。
47. K.K. Wang, C.W. Hsu, L.W. Chang, D.S. Gan, K.C. Yang, “Role of Al in Zn bath on the formation of the inhibition layer duringhot-dip galvanizing for a 1.2Si–1.5Mn transformation-inducedplasticity steel”, Appl. Surf. Sci., 285P (2013) 458-468.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code