Responsive image
博碩士論文 etd-0713115-153535 詳細資訊
Title page for etd-0713115-153535
論文名稱
Title
蛋白質結構預測方法之回顧
A Survey of Computational Methods for Protein Structure Prediction
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-30
繳交日期
Date of Submission
2015-08-14
關鍵字
Keywords
蛋白質結構預測、三級結構預測、三級結構、結構基因組學、計算機結構生物學、生物資訊
structural genomics, protein structure prediction, computational structural biology, tertiary structure prediction, tertiary structure, bioinformatics
統計
Statistics
本論文已被瀏覽 5699 次,被下載 502
The thesis/dissertation has been browsed 5699 times, has been downloaded 502 times.
中文摘要
蛋白質結構預測是相當困難的題目,近幾十年來,各式技術和資源的發展幫助我們透過不同的角度來探討這個問題。在這些方法中,從頭計算法(ab initio method)是最直覺的方法,該方法利用物理學原理來模擬蛋白折疊的過程。其他方法則基於尋找同源性的蛋白質,並辨識出最好的三維結構模板(template)來建構蛋白質結構,這些基於模板進行蛋白質結構預測的方法又可分為同源模擬法(homology modeling)和摺疊辨識法(fold recognition)。在此論文中,我們將回顧並討論五個蛋白質結構預測伺服器和四個蛋白質骨幹重建方法所使用的技術與預測成果。
Abstract
The job of protein structure prediction is not easy. Various types of techniques and resources have been developed and deployed in the past decades to approach this problem from different perspectives. Among these methods, the first and most intuitive one is referred to the ab initio method, which intends to model the protein folding process by means of physical laws. Other methods, such as the comparative modeling methods, are based on the recognition of spatial motifs in protein database. These template-based methods can be further divided into the homology modeling and fold recognition methods. In this thesis, we will review the techniques in the area, in which five protein structure prediction servers and four protein backbone reconstruction methods will be described and surveyed.
目次 Table of Contents
THESIS VERIFICATION FORM i
THESIS AUTHORIZATION FORM iii
ACKNOWLEDGEMENT iv
ABSTRACT v
TABLE OF CONTENTS vii
LIST OF FIGURES ix
LIST OF TABLES xii
1 Introduction 1
2 Preliminaries 4
2.1 Proteins 4
2.1.1 Amino Acid Residues 6
2.1.2 Protein Structures 9
2.2 Critical Assessment of Protein Structure Prediction 14
2.3 Evaluation Methods of Structure Prediction 15
2.3.1 Root Mean Square Deviation (RMSD) 16
2.3.2 Global Distance Test-Total Score 17
2.3.3 Template Modeling Score (TM-score) 17
2.4 The Protein Structure Prediction Methodologies 18
2.4.1 Ab Initio Protein Structure Prediction 18
2.4.2 Protein Homology Modeling 20
2.4.3 Protein Treading/Fold Recognition 23
3 A Review of Protein Structure Prediction Methods 25
3.1 Data Formats 25
3.1.1 FASTA Format 25
3.1.2 Protein Data Bank (File Format) 26
3.2 Protein Structure Prediction Methods without Knowing Cα Trace 27
3.2.1 I-TASSER 27
3.2.2 Robetta 29
3.2.3 HHpred 31
3.2.4 RaptorX 35
3.2.5 MULTICOM 38
3.3 Protein Structure Prediction Methods with Cα Trace 41
3.3.1 PULCHRA 42
3.3.2 SABBAC 44
3.3.3 BBQ 46
3.3.4 PD2 ca2main 46
4 Experimental Results 49
5 Conclusions 55
Bibliography 57
參考文獻 References
[1] N. Alexandrov and I. Shindyalov, “PDP: protein domain parser,” Bioinformatics, Vol. 19, pp. 429–430, 2003.
[2] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment search tool,” Journal of Molecular Biology, Vol. 215, No. 3, pp. 403–410, 1990.
[3] S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, W. M. Z. Zhang, and D. J. Lipman, “Gapped BLAST and PSI-BLAST: a new generation of protein database search programs,” Nucleic Acids Research, Vol. 25, No. 17, pp. 3389–3402, 1997.
[4] C. B. Anfinsen, E. Haber, M. Sela, and F. H. W. Jr, “The kinetics of formation of native ribonuclease during oxidation of the reduced polypeptide chain,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 47, pp. 1309–1314, 1961.
[5] C. B. Anfinsen, R. R. Redfield, W. L. Choate, J. Page, and W. R. Carroll, “Studies on the gross structure, cross-linkages, and terminal sequences in ribonuclease,” Journal of Biological Chemistry, Vol. 207, pp. 201–210, 1954.
[6] A. Bairoch, “The ENZYME database in 2000,” Nucleic Acids Research, Vol. 28, pp. 304–305, 2000.
[7] D. Baker and A. Sali, “Protein structure prediction and structural genomics,” Science, Vol. 294, pp. 93–96, 2001.
[8] H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov, and P. E. Bourne, “The protein data bank,” Nucleic Acids Research, Vol. 28, pp. 235–242, 2000.
[9] A. Biegert and J. Soding, “De novo identification of highly diverged protein repeats by probabilistic consistency,” Bioinformatics, Vol. 24, pp. 807–814, 2008.
[10] A. Biegert and J. Soding, “Sequence context-specific profiles for homology searching,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 106, pp. 3770–3775, 2009.
[11] J. U. Bowie and D. Eisenberg, “An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 91, pp. 4436–4440, 1994.
[12] J. U. Bowie, R. Luthy, and D. Eisenberg, “A method to identify protein sequences that fold into a known three-dimensional structure,” Science, Vol. 253, pp. 164–170, 1991.
[13] S. E. Brenner, C. Chothia, T. J. Hubbard, and A. G. Murzin, “Understanding protein structure: Using scop for fold interpretation,” Methods in Enzymology, Vol. 266, pp. 635–643, 1996.
[14] B. R. Brooks, C. L. Brooks III, A. D. Mackerell, L. Nilsson, R. J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. B. A. Caflisch, L. Caves, Q. Cui, A. R. Dinner, M. Feig, S. Fischer, J. Gao, M. Hodoscek, W. Im, K. Kuczera, T. Lazaridis, J. Ma, V. Ovchinnikov, E. Paci, R. W. Pastor, C. B. Post, J. Z. Pu, M. Schaefer, B. Tidor, R. M. Venable, H. L. Woodcock, X. Wu, W. Yang, D. M. York, and M. Karplus, “CHARMM: The biomolecular simulation program,” Journal of Computational Chemistry, Vol. 30, pp. 1545–1614, 2009.
[15] W. Browne, A. North, D. Phillips, K. Brew, T. C. Vanaman, and R. L. Hill, “A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen’s egg-white lysozyme,” Journal of Molecular Biology, Vol. 42, pp. 65–86, 1969.
[16] S. H. Bryant and C. E. Lawrence, “An empirical energy function for threading protein sequence through the folding motif,” Proteins, Vol. 16, pp. 92–1992, 1993.
[17] C. Bystroff and D. Baker, “Prediction of local structure in proteins using a library of sequence-structure motifs,” Journal of Molecular Biology, Vol. 281, pp. 565–577, 1998.
[18] A. C. Camproux, R. Gautier, and P. Tuffery, “A hidden markov model derived structural alphabet for proteins,” Journal of Molecular Biology, Vol. 339, pp. 591–605, 2004.
[19] G. Casari and M. J. Sippl, “Structure-derived hydrophobic potential. Hydrophobic potential derived from X-ray structures of globular proteins is able to identify native folds,” Journal of Molecular Biology, Vol. 224, pp. 725–732, 1992.
[20] J. M. Chandonia, G. Hon, N. S. Walker, L. L. Conte, P. Koehl, M. Levitt, and S. E. Brenner, “The ASTRAL compendium in 2004,” Nucleic Acids Research, Vol. 32, pp. 187–192, 2004.
[21] V. B. Chen, W. B. Arendall III, J. J. Headd, D. A. Keedy, R. M. Immormino, G. J. Kapral, L. W. Murray, J. S. Richardson, and D. C. Richardson, “MolProbity: all-atom structure validation for macromolecular crystallography,” Acta Crystallographica Section D, Vol. 66, pp. 12–21, 2010.
[22] J. Cheng, A. Z. Randall, M. J. Sweredoski, and P. Baldi, “SCRATCH: a protein structure and structural feature prediction server,” Nucleic Acids Research, Vol. 33, pp. W72–W76, 2005.
[23] J. Cheng and P. Baldi, “Three-stage prediction of protein β-sheets by neural networks, alignments and graph algorithms,” Bioinformatics, Vol. 21, pp. i75-i84, 2005.
[24] J. Cheng, J. Li, Z.Wang, J. Eickholt, and X. Deng, “The MULTICOM toolbox for protein structure prediction,” BMC Bioinformatics, Vol. 13, p. 2, 2012.
[25] J. Cheng, Z. Wang, J. Eickholt, and X. Deng, “Recursive protein modeling: a divide and conquer strategy for protein structure prediction and its case study in CASP9,” Journal of Bioinformatics and Computational Biology, Vol. 10, No. 3, 2012.
[26] C. Cortes and V. Vapnik, “Support-vector networks,” Machine Learning, Vol. 20, pp. 273–297, 1995.
[27] Critical Assessment of Techniques for Protein Structure Prediction (CASP), “GDT summary for T0769-D1.” http://www.predictioncenter.org/casp11/gdtplot.cgi?target=T0769-D1.
[28] D. M. Dawson, The biochemical genetics of man (edited by D.J.H. Brock, Oliver Mayo). Academic Press, 1972.
[29] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the EM algorithm,” Journal of the Royal Statistical Society, Series B, Vol. 39, pp. 1–38, 1977.
[30] M. A. DePristo, P. I. de Bakker, and T. L. Blundell, “Heterogeneity and inaccuracy in protein structures solved by X-ray crystallography,” Structure, Vol. 12, pp. 831–838, 2004.
[31] R. C. Edgar, “MUSCLE: a multiple sequence alignment method with reduced time and space complexity,” BMC Bioinformatics, Vol. 5, p. 133, 2004.
[32] J.-L. Fauchere, M. Charton, L. B. Kier, A. Verloop, and V. Pliska, “Amino acid side chain parameters for correlation studies in biology and pharmacology,” International Journal of Peptide and Protein Research, Vol. 32, pp. 269–278, 1988.
[33] R. D. Finn, J. Clements, and S. R. Eddy, “HMMER web server: interactive sequence similarity searching,” Nucleic Acids Research, Vol. 39, pp. W29–W37, 2011.
[34] R. D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J. E. Pollington, O. L. Gavin, P. Gunasekaran, G. Ceric, K. Forslund, L. Holm, E. L. Sonnhammer, S. R. Eddy, and A. Bateman, “The Pfam protein families database,” Nucleic Acids Research, Vol. 38, pp. D211–D222, 2010.
[35] A. Fiser and A. Sali, “Modeller: generation and refinement of homology-based protein structure models,” Methods in Enzymology, Vol. 374, pp. 461–491, 2003.
[36] C. J. Francoijs, J. P. Klomp, and R. M. Knegtel, “Sequence annotation of nuclear receptor ligand-binding domains by automated homology modeling,” Protein Engineering, Vol. 13, pp. 391–394, 2000.
[37] J. E. Frank, “Diagnosis and management of G6PD deficiency,” American Academy of Family Physicians, Vol. 72, pp. 1277–1282, 2005.
[38] Gene Ontology Consortium, “The Gene Ontology: enhancements for 2011,” Nucleic Acids Research, Vol. 40, pp. D559–D564, 2012.
[39] R. Grantham, “Amino acid difference formula to help explain protein evolution,” Science, Vol. 185, pp. 862–864, 1974.
[40] J. Greer, “Model for haptoglobin heavy chain based upon structural homology,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 77, pp. 3393–3397, 1980.
[41] M. Gribskov, A. D. McLachlan, and D. Eisenberg, “Profile analysis: Detection of distantly related proteins,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 84, pp. 4355–4358, 1987.
[42] A. J. F. Griffiths, S. R.Wessler, R. C. Lewontin, and S. B. Carroll, Introduction to Genetic Analysis, 9th Edition. W. H. Freeman and Company, 2007.
[43] D. Gront, S. Kmiecik, and A. Kolinski, “Backbone building from quadrilaterals: A fast and accurate algorithm for protein backbone reconstruction from alpha carbon coordinates,” Journal of Computational Chemistry, Vol. 28, pp. 1593–1597, 2007.
[44] D. Gusfield, “Efficient methods for multiple sequence alignment with guaranteed error bounds,” Bulletin of Mathematical Biology, Vol. 55, pp. 141–154, 1993.
[45] D. Gusfield, Algorithms on strings, trees, and sequences: computer science and computational biology. Cambridge University Press, New York, 1997.
[46] S. Henikoff and J. G. Henikoff, “Amino acid substitution matrices from protein blocks,” Proceedings of the National Academy of Sciences of the United States of America, pp. 10915–10919, 1992.
[47] D. A. Hinds and M. Levitt, “A lattice model for protein structure prediction at low resolution,” Proceedings of the National Academy of Sciences of the United States of America, Vol. 89, pp. 2536–2540, 1992.
[48] L. Holm and C. Sander, “Database algorithm for generating protein backbone and side-chain coordinates from a c alpha trace application to model building and detection of coordinate errors,” Journal of Molecular Biology, Vol. 21, No. 1, pp. 183–194, 1991.
[49] L. Holm and C. Sander, “Parser for protein folding units,” Proteins, Vol. 19, pp. 256–268, 1994.
[50] L. Holm and C. Sander, “Mapping the protein universe,” Science, Vol. 273, pp. 595–603, 1996.
[51] R. Hughey and A. Krogh, “SAM: sequence alignment and modeling software system,” Technique Report, University of California at Santa Cruz Santa Cruz, CA, USA, 1995.
[52] D. T. Jones, “GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences,” Journal of Molecular Biology, Vol. 287, pp. 797–815, 1999.
[53] D. T. Jones, “Protein secondary structure prediction based on position-specific scoring matrices,” Journal of Molecular Biology, Vol. 292, pp. 195–202, 1999.
[54] W. Kabsch, “A solution for the best rotation to relate two sets of vectors,” Acta Crystallographica Section A, Vol. 32, pp. 922–923, 1976.
[55] W. Kabsch, “A discussion of the solution for the best rotation to relate two sets of vectors,” Acta Crystallographica Section A, Vol. 34, pp. 827–828, 1978.
[56] W. Kabsch and C. Sander, “Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features,” Biopolymers, Vol. 22, pp. 2577–2637, 1983.
[57] S. Kaczanowski and P. Zielenkiewicz, “Why similar protein sequences encode similar three-dimensional structures?,” Theoretical Chemistry Accounts, Vol. 125, pp. 643–650, 2010.
[58] M. Kallberg, H. Wang, S. Wang, J. Peng, Z. Wang, H. Lu, and J. Xu, “Template-based protein structure modeling using the raptorx web server,” Nature Protocols, Vol. 7, pp. 1511–1522, 2012.
[59] K. Karplus, R. Karchin, C. Barrett, S. Tu, M. Cline, M. Diekhans, L. Grate, J. Casper, and R. Hughey, “What is the value added by human intervention in protein structure prediction?,” Proteins, Vol. Suppl. 5, pp. 86–91, 2001.
[60] R. Kazmierkiewicz, A. Liwo, and H. A. Scheraga, “Energy-based reconstruction of a protein backbone from its α-carbon trace by a Monte-Carlo method,” Journal of Computational Chemistry, Vol. 23, pp. 715–723, 2002.
[61] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization by simulated annealing,” Science, Vol. 220, pp. 671–680, 1983.
[62] A. Kolinski, D. Gront, P. Pokarowski, and J. Skolnick, “A simple lattice model that exhibits a protein-like cooperative all-or-none folding transition,” Biopolymers, Vol. 69, pp. 399–405, 2003.
[63] A. Krogh, M. Brown, I. S. Mian, K. Sjolander, and D. Haussler, “Hidden markov models in computational biology. Applications to protein modeling,” Journal of Molecular Biology, Vol. 235, pp. 290–308, 1994.
[64] J. Kyte and R. F. Doolittle, “A simple method for displaying the hydropathic character of a protein,” Journal of Molecular Biology, Vol. 157, pp. 105–132, 1982.
[65] J. D. Lafferty, A. McCallum, and F. C. N. Pereira, “Conditional random fields: Probabilistic models for segmenting and labeling sequence data,” Proceedings of the 18th International Conference, San Francisco, CA, USA, pp. 282–289, 2001.
[66] K. F. Lau and K. A. Dill, “A lattice statistical mechanics model of the conformational and sequence spaces of proteins,” Macromolecules, Vol. 22, pp. 3986–3997, 1989.
[67] A. Leaver-fay, M. Tyka, S. M. Lewis, F. Lange, J. Thompson, R. Jacak, K. Kaufman, P. D. Renfrew, C. A. Smith, W. Sheffler, I. W. Davis, S. Cooper, A. Treuille, D. J. M, F. Richter, Y. en Andrew Ban, S. J. Fleishman, E. Corn, D. E. Kim, S. Lyskov, M. Berrondo, S. Mentzer, K. Z. Popovic, K. J. J. Havranek, J. Karanicolas, R. Das, J. Meiler, T. Kortemme, J. J. Gray, B. Kuhlman, D. Baker, and P. Bradley, “ROSETTA3: An object-oriented software suite for the simulation and design of macromolecules,” Methods in Enzymology, Vol. 487, pp. 545–547, 2011.
[68] C. Levinthal, “Are there pathways for protein folding?,” Journal de Chimie Physique, Vol. 65, pp. 44–45, 1968.
[69] M. Levitt and A. Warshel, “Computer simulation of protein folding,” Nature, Vol. 253, pp. 694–698, 1975.
[70] H. Li, R. Helling, C. Tang, and N. Wingreen, “Emergence of preferred structures in a simple model of protein folding,” Science, Vol. 273, pp. 666–669, 1996.
[71] H. Li, C. Tang, and N. Wingreen, “Are protein folds atypical?,” Proceedings of the National Academy of Sciences of the United States of America, pp. 4987–4990, 1998.
[72] H. Li, C. Tang, and N. Wingreen, “Designability of protein structures: a lattice-model study using the Miyazawa-Jernigan matrix,” Vol. 49, pp. 403–412, 2002.
[73] J. Li, X. Deng, J. Eickholt, and J. Cheng, “Designing and benchmarking the MULTICOM protein structure prediction system,” BMC Structural Biology, Vol. 13, p. 2, 2013.
[74] D. J. Lipman and W. R. Pearson, “Rapid and sensitive protein similarity searches,” Science, Vol. 227, pp. 1435–1441, 1985.
[75] D. C. Liu and J. Nocedal, “On the limited memory BFGS method for large scale optimization,” Mathematical Programming, Vol. 45, pp. 503–528, 1989.
[76] R. Luthy, J. U. Bowie, and D. Eisenberg, “Assessment of protein models with three-dimensional profiles,” Nature, Vol. 356, pp. 83–85, 1992.
[77] J. Ma, J. Peng, S. Wang, and J. Xu, “A conditional neural fields model for protein threading,” Bioinformatics, Vol. 28, pp. i59–i66, 2012.
[78] J. T. MacDonald, K. Maksimiak, M. I. Sadowski, and W. R. Taylor, “De novo backbone scaffolds for protein design,” Proteins, Vol. 75, pp. 1311–1325, 2010.
[79] A. D. MacKerell, D. Bashford, Bellott, R. L. Dunbrack, J. D. Evanseck, M. J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos, S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher, B. Roux, M. Schlenkrich, J. C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wirkiewicz-Kuczera, D. Yin, and M. Karplus, “All-atom empirical potential for molecular modeling and dynamics studies of proteins,” Journal of Physical Chemistry B, Vol. 102, pp. 3586–3616, 1998.
[80] M. Madera, “PRC, the profile comparer.” http://supfam.org/PRC/.
[81] A. Marchler-Bauer, M. K. Derbyshire, N. R. Gonzales, S. Lu, F. Chitsaz, L. Y. Geer, R. C. Geer, J. He, M. Gwadz, D. I. Hurwitz, C. J. Lanczycki, F. Lu, G. H. Marchler, J. S. Song, N. Thanki, Z. Wang, R. A. Yamashita, D. Zhang, C. Zheng, and S. H. Bryant, “CDD: NCBI’s conserved domain database,” Nucleic Acids Research, Vol. 43, pp. D222–D226, 2015.
[82] J. Maupetit, R. Gautier, and P. Tuffery, “SABBAC: online structural alphabet-based protein backbone reconstruction from alpha-carbon trace,” Nucleic Acids Research, Vol. 34, pp. W147–W151, 2006.
[83] J. Meiler, M. Mueller, A. Zeidler, and F. Schmaeschke, “JUFO: Secondary structure prediction for proteins.” http://www.jens-meiler.de/jufo.html, 2002.
[84] K. M. Merz, D. Ringe, and C. H. Reynolds, Drug Design: Structure- and Ligand-Based Approaches. Cambridge University Press, 2010.
[85] M. Milik, A. Kolinski, and J. Skolnick, “Algorithm for rapid reconstruction of protein backbone from alpha carbon coordinates,” Journal of Computational Chemistry, Vol. 18, pp. 80–85, 1997.
[86] B. L. Moore, L. A. Kelley, J. W. Murray, and J. T. MacDonald, “High-quality protein backbone reconstruction from alpha carbons using gaussian mixture models,” Journal of Computational Chemistry, Vol. 34, pp. 1881–1889, 2013.
[87] J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, and A. Tramontano, “Critical assessment of methods of protein structure prediction - Round VIII,” Proteins, Vol. 77, pp. 1–4, 2009.
[88] J. Moult, K. Fidelis, A. Kryshtafovych, B. Rost, and A. Tramontano, “Critical assessment of methods of protein structure prediction (CASP) - Round IX,” Proteins, Vol. 79, pp. 1–5, 2011.
[89] J. Moult, K. Fidelis, A. Kryshtafovych, T. Schwede, and A. Tramontano, “Critical assessment of methods of protein structure prediction (CASP) - Round X,” Proteins, Vol. 82, pp. 1–6, 2013.
[90] A. G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia, “SCOP: A structural classification of proteins database for the investigation of sequences and structures,” Journal of Molecular Biology, Vol. 247, pp. 536–540, 1995.
[91] S. Needleman and C. Wunsch, “A general method applicable to the search for similarities in the amino acid sequence of two proteins,” Journal of Molecular Biology, Vol. 48, pp. 443–453, 1970.
[92] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B. Swindells, and J. M. Thornton, “CATH - a hierarchic classification of protein domain structures,” Structure, Vol. 5, pp. 1093–1109, 1997.
[93] B. H. Park and M. Levitt, “The complexity and accuracy of discrete state models of protein structure,” Journal of Molecular Biology, Vol. 249, pp. 493–507, 1995.
[94] J. Peng, L. Bo, and J. Xu, “Conditional neural fields,” Advances in Neural Information Processing Systems 22, Vol. 22, pp. 1419–1427, 2009.
[95] J. Peng and J. Xu, “Boosting protein threading accuracy,” Proceedings of the 13th Annual International Conference on Research in Computational Molecular Biology (RECOMB), Lecture Notes in Computer Science, Tucson, AZ, USA, pp. 31–45, 2009.
[96] J. Peng and J. Xu, “Low-homology protein threading,” Bioinformatics, Vol. 26, pp. i294–i300, 2010.
[97] J. Peng and J. Xu, “A multiple-template approach to protein threading,” Proteins, Vol. 79, pp. 1930–1939, 2011.
[98] J. Peng and J. Xu, “RaptorX: exploiting structure information for protein alignment by statistical inference,” Proteins, Vol. 79, pp. 161–171, 2011.
[99] S. Pietrokovski, “Searching databases of conserved sequence regions by aligning protein multiple-alignments,” Nucleic Acids Research, Vol. 24, pp. 3836–3845, 1996.
[100] H. N. Po and N. M. Senozan, “The Henderson-Hasselbalch equation: Its history and limitations,” Journal of Chemical Education, Vol. 78, pp. 1499–1503, 2001.
[101] E. O. Purisima and H. A. Scheraga, “Conversion from a virtual-bond chain to a complete polypeptide backbone chain,” Biopolymers, Vol. 23, pp. 1207–1224, 1984.
[102] G. Ramachandran, C. Ramakrishnan, and V. Sasisekharan, “Stereochemistry of polypeptide chain configurations,” Journal of Molecular Biology, Vol. 7, pp. 95–99, 1963.
[103] S. Raman, R. Vernon, J. Thompson, M. Tyka, R. Sadreyev, J. Pei, D. Kim, E. Kellogg, F. DiMaio, O. Lange, L. Kinch, W. Sheffler, B.-H. Kim, R. Das, N. V. Grishin, and D. Baker, “Structure prediction for CASP8 with all-atom refinement using Rosetta,” Proteins, Vol. 77, pp. 89–99, 2009.
[104] R. J. Read and G. Chavali, “Assessment of CASP7 predictions in the high accuracy template-based modeling category,” Proteins, Vol. S8, pp. 27–37, 2007.
[105] M. Remmert, A. Bieger, A. Hauser, and J. Soding, “HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment,” Nature Methods, Vol. 9, pp. 173–175, 2011.
[106] J. S. Richardson, “The anatomy and taxonomy of protein structure,” Advances in Protein Chemistry, Vol. 34, pp. 167–339, 1981.
[107] C. Rohl, C. Strauss, K. Misura, and D. Baker, “Protein structure prediction using rosetta,” Methods in Enzymology, Vol. 383, pp. 66–93, 2004.
[108] P. Rotkiewicz and J. Skolnick, “Fast procedure for reconstruction of full-atom protein models from reduced representations,” Journal of Computational Chemistry, Vol. 29, pp. 1460–1465, 2008.
[109] A. Roy, A. Kucukural, and Y. Zhang, “I-TASSER: a unified platform for automated protein structure and function prediction,” Nature Protocols, Vol. 5, pp. 725–738, 2010.
[110] R. Sadreyev and N. Grishin, “COMPASS: A tool for comparison of multiple protein alignments with assessment of statistical significance,” Journal of Molecular Biology, Vol. 326, pp. 317–336, 2003.
[111] A. Sali and T. L. Blundell, “Comparative protein modelling by satisfaction of spatial restraints,” Journal of Molecular Biology, Vol. 234, pp. 779–815, 1993.
[112] A. Sali, L. Potterton, F. Yuan, H. van Vlijmen, and M. Karplus, “Evaluation of comparative protein modeling by modeller,” Proteins, Vol. 23, pp. 318–326, 1995.
[113] F. Sanger, E. O. P. Thompson, and R. Kitai, “The amide groups of insulin,” Vol. 59, pp. 509–518, 1955.
[114] S. Santini, G. Wei, N. Mousseau, and P. Derreumaux, “Exploring the folding pathways of proteins through energy landscape sampling: Application to Alzheimer’s β-amyloid peptide,” Internet Electronic Journal of Molecular Design, Vol. 2, No. 9, pp. 564–577, 2003.
[115] N. Siew, A. Elofsson, L. Rychlewski, and D. Fischer, “MaxSub: an automated measure for the assessment of protein structure prediction quality,” Bioinformatics, Vol. 16, pp. 776–785, 2000.
[116] M. J. Sippl, “Calculation of conformational ensembles from potentials of mean force. An approach to the knowledge-based prediction of local structures in globular proteins,” Journal of Molecular Biology, Vol. 213, pp. 859–883, 1990.
[117] T. Smith and M. Waterman, “Identification of common molecular subsequences,” Journal of Molecular Biology, Vol. 147, pp. 195–197, 1981.
[118] J. Soding, A. Biegert, and A. Lupas, “The HHpred interactive server for protein homology detection and structure prediction,” Nucleic Acids Research, Vol. 33, pp. W244–W248, 2005.
[119] J. Soding, “Protein homology detection by HMM-HMM comparison,” Bioinformatics, Vol. 21, pp. 951–960, 2005.
[120] Y. Song, F. DiMaio, R. Wang, D. Kim, C. Miles, T. Brunette, J. Thompson, and D. Baker, “High-resolution comparative modeling with RosettaCM,” Structure, Vol. 21, pp. 1735–1742, 2013.
[121] J. Swaminathan and MSD staff at the European Bioinformatics Institute, “Human thioredoxin (PDB ID: 1AIU).” http://www.ebi.ac.uk/pdbe/entry/pdb/1auc.
[122] J. tao Guo, D. Xu, D. Kim, and Y. Xu, “Improving the performance of domain parser for structural domain partition using neural network,” Nucleic Acids Research, Vol. 31, pp. 944–952, 2003.
[123] A. N. Tegge, Z. Wang, J. Eickholt, and J. Cheng, “NNcon: improved protein contact map prediction using 2D-recursive neural networks,” Nucleic Acids Research, Vol. 37, pp. W515–518, 2009.
[124] C. Toniolo and E. Benedetti, “The polypeptide 310-helix,” Trends in Biochemical Sciences, Vol. 16, pp. 350–353, 1991.
[125] P. Tuffery and P. Derreumaux, “Dependency between consecutive local conformations helps assemble protein structures from secondary structures using Go potential and greedy algorithm,” Proteins, Vol. 61, p. 732740, 2005.
[126] P. Tuffery, F. Guyon, and P. Derreumaux, “Improved greedy algorithm for protein structure reconstruction,” Journal of Computational Chemistry, Vol. 26, pp. 506–513, 2005.
[127] A. Viterbi, “Error bounds for convolutional codes and an asymptotically optimum decoding algorithm,” IEEE Transactions on Information Theory, Vol. 13, pp. 260–269, 1967.
[128] D. Vitkup, E. Melamud, J. Moult, and C. Sander, “Completeness in structural genomics,” Nature Structural & Molecular Biology, Vol. 8, pp. 559–566, 2001.
[129] Z. Wang, J. Eickholt, and J. Cheng, “MULTICOM: a multi-level combination approach to protein structure prediction and its assessments in CASP8,” Bioinformatics, Vol. 26, pp. 882–888, 2010.
[130] Z. Wang, J. Eickholt, and J. Cheng, “APOLLO: a quality assessment service for single and multiple protein models,” Bioinformatics, Vol. 27, pp. 1715–1716, 2011.
[131] Z. Wang, A. N. Tegge, and J. Cheng, “Evaluating the absolute quality of a single protein model using structural features and support vector machines,” Proteins, Vol. 75, pp. 638–647, 2009.
[132] Z. Wang, “How many fold types of protein are there in nature?,” Proteins, Vol. 26, pp. 186–191, 1996.
[133] M. Weiss, A. Jabs, and R. Hilgenfeld, “Peptide bonds revisited,” Nature Structural & Molecular Biology, Vol. 5, p. 676, 1998.
[134] D. B. Wetlaufer, “Nucleation, rapid folding, and globular intrachain regions in proteins,” Proceedings of the National Academy of Sciences of the United States of America, pp. 697–701, 1973.
[135] S. Wu and Y. Zhang, “LOMETS: a local meta-threading-server for protein structure prediction,” Nucleic Acids Research, Vol. 35, pp. 3375–3382, 2007.
[136] D. Xu and Y. Zhang, “Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization,” Biophysical Journal, Vol. 101, pp. 2525–2534, 2011.
[137] J. Xu, M. Li, D. Kim, and Y. Xu, “RAPTOR: optimal protein threading by linear programming,” Journal of Bioinformatics and Computational Biology, Vol. 1, pp. 95–117, 2003.
[138] Y. Xu and D. Xu, “Protein threading using PROSPECT: design and evaluation,” Proteins, Vol. 40, pp. 343–354, 2000.
[139] Y. Xu, D. Xu, and J. Liang, Computational Methods for Protein Structure Prediction and Modeling: Volume 2: Structure Prediction. Springer, 2007.
[140] J. Yang, R. Yan, A. Roy, D. Xu, J. Poisson, and Y. Zhang, “The I-TASSER Suite: Protein structure and function prediction,” Nature Methods, Vol. 12, pp. 7–8, 2015.
[141] Y. Yang, E. Faraggi, H. Zhao, and Y. Zhou, “Improving protein fold recognition and template-based modeling by employing probabilistic-based matching between predicted one-dimensional structural properties of query and corresponding native properties of templates,” Bioinformatics, Vol. 27, pp. 2076–2082, 2011.
[142] A. Zemla, C. Venclovas, J. Moult, and K. Fidelis, “Processing and analysis of CASP3 protein structure predictions,” Proteins, Vol. 3, pp. 22–29, 1999.
[143] C. Zhang and C. DeLisi, “Estimating the total number of protein folds,” Journal of Molecular Biology, Vol. 284, pp. 1301–1305, 1998.
[144] Y. Zhang, “Automated assessment of protein structure prediction in CASP10.” http://zhanglab.ccmb.med.umich.edu/casp10/.
[145] Y. Zhang, “Automated assessment of protein structure prediction in CASP11.” http://zhanglab.ccmb.med.umich.edu/casp11/.
[146] Y. Zhang, “Automated assessment of protein structure prediction in CASP8.” http://zhanglab.ccmb.med.umich.edu/casp8/.
[147] Y. Zhang, “Automated assessment of protein structure prediction in CASP9.” http://zhanglab.ccmb.med.umich.edu/casp9/.
[148] Y. Zhang, “I-TASSER server for protein 3D structure prediction,” BMC Bioinformatics, Vol. 9, p. 40, 2008.
[149] Y. Zhang and J. Skolnick, “Scoring function for automated assessment of protein structure template quality,” Proteins, Vol. 57, pp. 702–710, 2004.
[150] Y. Zhang and J. Skolnick, “SPICKER: a clustering approach to identify near-native protein folds,” Journal of Computational Chemistry, Vol. 25, pp. 865–871, 2004.
[151] Y. Zhang and J. Skolnick, “TM-align: a protein structure alignment algorithm based on the TM-score,” Nucleic Acids Research, Vol. 33, pp. 2302–2309, 2005.
[152] H. Zhou and Y. Zhou, “SPEM: improving multiple sequence alignment with sequence profiles and predicted secondary structures,” Bioinformatics, Vol. 21, pp. 3615–3621, 2005.
[153] Y. Zhou and M. E. Johnson, “Comparative molecular modeling analysis of-5-amidinoindole and benzamidine binding to thrombin and trypsin: specific H-bond formation contributes to high 5-amidinoindole potency and selectivity for thrombin and factor Xa,” Journal of Molecular Recognition, Vol. 12, pp. 235–241, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code