Responsive image
博碩士論文 etd-0713116-113421 詳細資訊
Title page for etd-0713116-113421
論文名稱
Title
以超臨界腐蝕去合金法製作銀鋁奈米孔洞結構
Nanoporous structure fabricated by dealloying AgAl thin film through supercritical fluid corrosion
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-14
繳交日期
Date of Submission
2016-08-13
關鍵字
Keywords
超臨界流體、腐蝕、奈米孔洞、薄膜、銀鋁合金
supercritical fluid, Nanoporous structure, thin film, corrosion, Ag-Al alloy,
統計
Statistics
本論文已被瀏覽 5627 次,被下載 197
The thesis/dissertation has been browsed 5627 times, has been downloaded 197 times.
中文摘要
這項研究主要是利用超臨界二氧化碳混和液態水與液態有機酸,來製作奈米孔洞材料。利用磁控濺鍍的方式在矽基板上鍍上銀鋁合金薄膜,其製作之薄膜的元素莫耳比為Ag35Al65、Ag50Al50與Ag65Al35。並將薄膜放置在反應槽當中,反應槽中同時加入約0.25毫升的水或酸。接著將高壓二氧化碳通入反應槽,並同時提升反應槽溫度至120oC,形成超臨界二氧化碳。由於水在超臨界二氧化碳中的溶解度相當高,溶於超臨界二氧化碳的水具有非常強的氧化力且含有微量的碳酸根,因此將與銀鋁合金薄膜進行反應。反應過程中銀鋁薄膜將被選擇性的腐蝕,其中的鋁以及Ag2Al會被腐蝕掉,剩下銀枝條。然而,利用水融入超臨界二氧化碳的腐蝕實驗過於耗時,需要1小時以上方能有明顯的效果。因此,若在反應槽之中加入草酸,其草酸會與鋁反應,並且在更短的時間之內生成孔洞。得到的孔洞材料我們將用XRD、SEM與BET進行材料分析。我們發現只Ag35Al65能被超臨界二氧化碳中的水腐蝕,其孔洞大小為300 nm-500 nm,而Ag35Al65、Ag50Al50與Ag65Al35在經過超臨界二氧化碳中的微量草酸腐蝕後,孔洞大小為100 nm-500 nm,孔洞率分為72%、49%與32%。此外反應槽的壓力升高,會提升選擇性腐蝕的速度,透過SEM觀察,可知2000 psi明顯快於1600 psi。由於超齡界流體具有非常低的表面張力,因此他能夠滲透至相當細微的孔洞,因此銀比例較高的Ag50Al50與Ag65Al35,也能經由超臨界腐蝕達到去合金之作用。
Abstract
In this research, the nanoporous silver foams are fabricated by dealloying the Ag-Al thin films in supercritical (SC) carbon oxide. The Ag-Al thin films were deposited by sputtering with different compositions of Ag35Al65, Ag50Al50 and Ag65Al35 (in atomic percentage, at%). After the thin films are formed, they are set in a reaction chamber filled with supercritical carbon oxide. The supercritical carbon oxide is a mixture with water. Water has high solubility in SC CO2, and both water and CO2 are common materials we can gain in nature. Normal reverse osmotic water has carbonate (CO32-) inside because a small amount of CO2 gas in the atmosphere dissolved in water. The water has strong oxidative capacity in SC CO2, which could react with alumina and form the pore with the size from 300 nm-500 nm. In this research, we also choose H2C2O4 aqueous solution as the solute in the SC CO2 reaction chamber. The foam analyses were done by SEM, XRD and BET. The surface value of the as-dealloyed Ag35Al65, Ag50Al50 and Ag65Al35 are 4.5, 3.1, 2.6 m2g-1 respectively, and the porosity volume fraction values are 72%, 49%, 32% respectively. It takes less time to form a nanoporous structure, and the pore size is only 100 nm-300 nm. As we increase the pressure of the chamber, the corrosion rate will be raised as well. Due to the small tension of supercritical fluid, the supercritical fluid dealloying process is able to form nanoporous silver when the alloy has higher silver compositions like Ag50Al50 and Ag65Al35, for which the typical chemical dealloying is not able to do so.
目次 Table of Contents
中文摘要 i
Abstract ii
Table of content iii
List of Tables v
List of Figures vi
Chapter 1 Introduction 1
1.1 Nanoporous materials 1
1.2 Supercritical fluid 3
1.3 Motivation 4
Chapter 2 Background and literature review 7
2.1 Corrosion 7
2.1.1 Introduction 7
2.1.2 The corrosion behavior of Al-Ag alloys 9
2.1.3 Corrosion in supercritical CO2 9
2.1.4 Water in supercritical CO2 10
2.2 Dealloying 11
2.3 Supercitical Fluid 15
2.3.1 Supercritical fluid solvent 15
2.3.2 The surface tension of supercritical CO2 16
2.3.4 Supercritical CO2 17
2.3.5 Water solubility in supercritical fluid 20
2.4 Chemical dealloying by SCFs 20
2.4.1 Metal corrosion in a supercritical carbon dioxide 20
2.4.2 Supercritical carbon dioxide corrosion to fabricate nanoporous structure 21
2.5 Technique for characterization of thin film porosity 21
2.5.1 X-ray reflectivity and small angle x-ray scattering 21
2.5.2 Surface acoustic wave 22
2.5.3 Specific surface area and pore size distribution analyzer, BET 23
2.5.4 Image analysis 24
Chapter 3 Experimental procedures 25
3.1 Sample preparation 26
3.1.1 Multi-target sputtering 26
3.1.2 The supercritical equipment 27
3.2 Analyses 29
3.2.1 X-ray diffraction (XRD) 29
3.2.2 Scanning electron microscopy (SEM) 30
3.2.3 Qualitative and quantitative composition analyses 30
3.2.4 Image analysis 31
3.2.5 BET test 31
Chapter 4 Results and discussion 33
4.1 XRD analysis 33
4.2 Microstructure and composition analyses 34
4.3 HCl in supercritical fluid 37
4.4 Typical chemical dealloying and supercritical fluid dealloying 38
4.4.1 Typical chemical dealloying and supercritical fluid dealloying of HCl 38
4.4.2 The corrosion time and pore size 40
4.4.3 Corrosion results after raising the Ag content 41
4.5 Selective etching after the annealing 41
4.6 Porosity and surface area analyses 42
Chapter 5 Conclusion 44
References 46
Tables 51
Figures 57
參考文獻 References
[1] S. Polarz, B. J. Smarsly, Nanoscience Nanotechnology, 6 (2002) 581-612.
[2] C. X. Xu, J. X. Su, X. H. Xu, P. P. Liu, H. J. Zhao, F. Tian, Y. Ding, Journal of the American Chemical Society, 129 (2007) 42-43.
[3] L. F. Liu, E. Pippel, R. Scholz, U. Gösele, Nano Letters, 9 (2009) 4352-4358.
[4] L. H. Qian, W. Shen, B. Das, B. Shen, G.W. Qin, Chemical Physics Letters, 479 (2009) 259-263.
[5] A. K. M. Kafi, A. Ahmadalinezhad, J. P. Wang, D. F. Thomas, A. Chen, Biosensors and Bioelectronics. 25 (2010) 2458-2463.
[6] J. Erlebacher, A. Karma, N. Dimitrov, K. Sieradzki, Nature, 410 (2001) 450-453.
[7] G. Li, Z. Sun, S. Yang, B. Ding, S. Yang, Z. Yang, F. Wang, Solid State Sciences, 13 (2011) 1379-1384.
[8] X. Wang, C. Zhao, W. Wang, Z. Zhang, Journal of Physical Chemistry C, 113 (2009) 13139-13150.
[9] H. B. Lu, F. H. Wang, Journal of Alloys and Compounds, 465 (2008) 139-144.
[10] C. Aymonier, A.C. Le Meur, V. Heroguez, Nanocomposite Particles for Bio-Applications, Pan Stanford, Singapore (2011).
[11] J. P. Lockwood, R. W. Hazlett, Formats and Editions of Volcanoes, Wiley- Blackwell, England (2010).
[12] Z. Knez, E. Markocic, M. Leitgeb, M. Primozic, M. K. Hrncic, M. Skerget, Energy, 77 (2014) 235-243.
[13] R. Morrish, A. J. Muscat, Journal of Physical Chemistry C, 117(2013)12071-12077.
[14] P. Munshi, S. Bhaduri, Current Science, 97(2009) 63-72.
[15] 柯賢文, 腐蝕及其防治, 全華科技圖書股份有限公司, 中華民國 (2006).
[16] A. S. Ruhl, A. Kranzmann, Journal of Supercritical Fluids, 68 (2012) 81-86.
[17] A. N. Sabirzyanov, A. P. Il'in, A. R. Akhunov, F. M. Gumerov, High Temperature, 40 (2002) 203-206.
[18] R. Kevin, B. Tim, D. Cory, A. Jonathan, B. Cristina, Review of Instruments, 75 (2004) 1089-1097.
[19] G. Tammann, Journal of Inorganic and General Chemistry, 107 (1919) 1-239.
[20] G. Masing, Journal of Inorganic and General Chemistry, 118 (1921) 293-308.
[21] A. J. Forty, Philosophical Magazine A, 42 (1980) 295-318.
[22] C. E. Wen, Y. Yamada, K. Shimojima, Y. chino, T. Asahina, Scripta Materialia, 45 (2001) 1147-1153.
[23] B. X. Lu, R. Spolenak, E. Arzt a, Thin Solid Films, 515 (2007) 7122–7126.
[24] Z, Zhang, Z, Qi, C, Somsen, X, Wanga, C, Zhaoa, Journal of Materials Chemistry, 19 (2009) 6042-6050.
[25] Z. Zhang, Physical Chemistry Chemical Physics, 12 (2010) 1453-1472.
[26] Z, Zhang, Z, Qi, J. Lin, X. Bian, Journal of Physical Chemistry C, 113 (2009) 1308-1314.
[27] T. Chena, W. Lua, X. Zhoua, H. Ma, Electrochemistry Communications, 13 (2011) 1086–1089.
[28] E. Szekely, B. Simándi1, E. Fogassy, S. Kemény1, I. Kmecz, Chirality, 15 (2007) 783-786.
[29] Teledyne Isco (2012) Supercritical Fluid Applications in Manufacturing and Materials Production.
[30] Z. Knez, M. Skerget, M. Knez Hrncic, Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries, Woodhead Publish, U.S.A. (2010).
[31] M. Saitio, J Biosci, Bioengineering 115 (2013) 590-9.
[32] M. R. Avhad, J. M. Marchetti, Renewable and Sustainable Energy Reviews, 50 (2015) 690-718.
[33] S. S. H. Rizvi, S. J. Mulvaney, Food Technology, 40 (1993) 78.
[34] E. Kiran, S. D. Yeo, Journal of Supercritical Fluids, 34 (2005) 287-308.
[35] J. McHardy, S. P. Sawan, Additives in Polymers: Industrial Analysis and Applications, Noyes Publications, U.S.A. (1998).
[36] R. G. Ye, G. H. Jia, D. G. Deng, Y. J. Hua, Z. G. Cui, S. L. Zhao, L. H. Huang, H. P. Wang, C. X. Li, S. Q. Xu, Journal of Physical Chemistry C, 115 (2011) 10851-10858.
[37] C. A. Diaz, L. M. Matuana, Journal of Vinyl and Additive Technology, 15 (2009) 211-218.
[38] F. Tabasinejad, R. G. Moore, S.A. Metha, K.C. Van Fraassen, Y. Barzin, Industrial & Engineering Chemistry Research, 50 (2011) 4029-4041.
[39] R. Morrish, A. J. Muscat, Journal of Physical Chemistry C, 117 (2013) 12071-12077.
[40] N. Simon, C. Latge, L. Gicquel, The International Congress on Advances in Nuclear Power Plants, 20 (2007).
[41] Y. D. Lin, master thesis, Block Copolymer-Templated Mesoporous Materials obtained by Evaporation-Induced Self Assembly, National Sun Yat-sen University (2011).
[42] D. J. Taylor, P. F. Fleig, S. L. Hietala, Thin Solid Film, 332 (1998) 257-261.
[43] S. Dourdain, J. F. Bardeau, M. Colas, B. Smarsly, A. Mehdi, B. M. Ocko, A. Gibaud, Applied Physics Letters, 86 (2005) 3-5.
[44] Z. Zhang, Z, Qi, W, Zhang, J, Qin, J, Frenzel, Journal of Physical Chemistry C, 113 (2009) 12626-12636.
[45] J. C. Kotz, P. M. Treichel, J. Townsend, Chemistry & Chemical Reactivity, Cengage Learning, U.S.A. (1987)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code