Responsive image
博碩士論文 etd-0713118-141648 詳細資訊
Title page for etd-0713118-141648
論文名稱
Title
氫氧化鉀活化之多孔性碳材的性質和應用
KOH-activated porous carbon materials: Properties and applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
132
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-18
繳交日期
Date of Submission
2018-08-13
關鍵字
Keywords
交聯多孔聚合物、氫氧化鉀活化、二氧化碳捕捉、汙染物吸附、氰酸酯熱固化作用、傅-克烷基化反應、聚氰網狀多孔碳材、氰酸酯、柔性電容器
cyanate ester thermal cyclotrimerization, Cyanate esters, flexible capacitors, contaminant adsorption, KOH-activation, carbon dioxide capture, Friedel-Crafts alkylation reaction, Polycyanurate porous carbon material, hypercrosslinked porous polymer
統計
Statistics
本論文已被瀏覽 5634 次,被下載 0
The thesis/dissertation has been browsed 5634 times, has been downloaded 0 times.
中文摘要
本實驗合成兩種新型多孔性碳材,第一類是藉由含有羥基官能基的分子(雙酚A,1,1'-聯-2-萘酚和酚醛樹脂)與溴化氰反應合成新的氰酸酯化合物,藉由其氰酸酯熱固化作用形成具由三嗪環的聚氰酯網狀結構,第二類是通過傅-克烷基化反應成功合成了一種以雙酚A為基本結構單元的超交聯多孔聚合物,再將兩者與KOH進行化學活化反應製備出多孔性碳材料,用作固體吸附劑,有效地除去二氧化碳、溶劑中污染物和柔性超級電容器的電極材料。
在高溫下,氰酸酯化合物的氰酸酯官能基進行熱固化作用得到聚氰酯網狀結構,其具有良好的熱穩定性,而雙酚A則透過傅-克烷基化反應形成高度的交聯結構使其熱穩定性得到提升,使兩者都可以在高溫下接受氫氧化鉀活化以提升孔洞性質。
進一步利用比表面積分析儀 (BET) 探討多孔性碳材,a-BPAC,a-BNC和a-PFC,分別顯示比表面積為1136,1080和1645 m2 g-1,HBPA-700則具有最高的比表面積為2340.7 m2g-1,因為其經過700℃的高溫鍛燒提升其孔洞含量。得到的多孔碳材皆可以有效捕捉二氧化碳以及吸附溶液中的污染物。我們還使用HBPA-700作為電極材料來製造柔性電容器。電容器可以在沒有外部刺激的作用下進行10次斷開和癒合並快速恢復其電容性能。有趣的是,電容器可以承受各種物理變形仍保持其電容性能。
Abstract
In this experiment, two types of porous carbon materials were synthesized. The first type was to synthesize new cyanate ester compounds (bisphenol A, 1,1-bi-2-naphthol and phenolic novolac resin) by reacting a hydroxyl group with cyanogen bromide, and then via thermal cyclotrimerization form polycyanurate networks, the second type is the synthesis of a hypercrosslinked porous polymer with bisphenol A as the basic structural unit through the Friedel-Crafts alkylation reaction, and then the samples with the KOH chemical activation reaction was performed to prepare a porous carbon material. The porous carbon materials are used as a solid adsorbent to effectively remove carbon dioxide, solvent contaminants and as electrode materials of flexible supercapacitors.
At high temperature, the thermal cyclotrimerization of the cyanate esters functional group form polycyanurate with good thermal stability. Bisphenol A through the Friedel-Crafts alkylation reaction form hypercrosslinked porous polymer, the crosslinked structure enhances its thermal stability. Both can be activated by potassium hydroxide at high temperatures to enhance pore properties.
Further investigation of porous carbon materials using a specific surface area analyzer (BET). a-BPAC, a-BNC and a-PFC showed specific surface areas 1136, 1080 and 1645 m2 g-1, respectively. The HBPA-700 had the highest specific surface areas is 2340.7 m2g-1 because its high-temperature calcination at 700°C to increase its pore content. The obtained porous carbon materials can effectively capture carbon dioxide and adsorb pollutants in the solution. We also use HBPA-700 as an electrode material to manufacture flexible capacitors. Capacitors can be cut and healed 10 times without external stimuli and quickly restore their capacitive performance. Interestingly, capacitors can withstand various physical deformations while still maintaining their capacitive performance.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
Outline of contents vi
List of Figure ix
List of Scheme ix
List of Table xiv
1.1. Introduction xvi
1.1.1.Nitrogen-doped porous carbon material (NPCs) xvi
1.1.2.Polycyanurate 2
1.1.3. Hydrothermal carbonization (HTC) 6
1.2. Experimental Section 8
1.2.1. Materials 8
1.2.2. Synthesis 8
1.2.3 Instrumentations 12
1.3. Result and discussion 14
1.3.1 Synthesis and characterization of cyanate monomers 14
1.3.2. Cyclotrimerization of cyanate monomers 15
1.3.3. TGA thermograms of polycyanurate porous carbon material 18
1.3.4. The Powder X-ray diffraction and Raman spectra of polycyanurate porous carbon material 20
1.3.5. The X-ray photoelectron spectroscopy of polycyanurate porous carbon material 21
1.3.6. Porous structures of polycyanurate porous carbon material 24
1.3.7. CO2 capture of polycyanurate porous carbon material 27
1.3.8. Contaminants Sorption of polycyanurate porous carbon material 29
1.4. Conclusion 34
1.5. References 36
2.1. Introduction 52
2.1.1.Hypercrosslinked porous polymers (HCPs) 52
2.1.2.KOH-activated carbons for supercapacitor electrodes 57
2.1.3.Flexible Supercapacitors 59
2.2. Experimental Section 63
2.2.1. Materials 63
2.2.2. Synthesis 63
2.2.3. Instrumentations 66
2.3. Results and discussion 68
2.3.1.Synthesis and characterization of hypercrosslinked porous carbon material 68
2.3.2.TGA thermograms of hypercrosslinked porous carbon material 70
2.3.3.The Powder X-ray diffraction and Raman spectra of hypercrosslinked porous carbon material 72
2.3.4.The X-ray photoelectron spectroscopy of hypercrosslinked porous carbon material 73
2.3.5.Porous structures of hypercrosslinked porous carbon material 76
2.3.6.CO2 capture of hypercrosslinked porous carbon material 78
2.3.7.Contaminants Sorption of hypercrosslinked porous carbon material 79
2.3.8.Hypercrosslinked porous carbon material for supercapacitor 84
2.4. Conclusion 90
2.5. References 92
Supporting information 103
參考文獻 References
chapter 1
1. J. Roeser, K. Kailasam and A. Thomas, Covalent triazine frameworks as heterogeneous catalysts for the synthesis of cyclic and linear carbonates from carbon dioxide and epoxidesm, Chem. Sus. Chem., 2012, 5, 1793-1799.
2. R. Palkovits, M. Antonietti, P. Kuhn and A. Thomas, Solid catalysts for the selective low-temperature oxidation of methane to methanol, Angew. Chem. Int. Ed., 2009, 48, 6909-6912.
3. C. Gu, N. Huang, J. Gao, F. Xu, Y. Xu and D. Jiang, Controlled synthesis of conjugated microporous polymer films: versatile platforms for highly sensitive and label-free chemo- and Biosensing, Angew. Chem., Int. Ed., 2014, 53, 4850-4855.
4. C. Gu, Y. Chen, Z. Zhang, S. Xue, S. Sun, K. Zhang, C. Zhong, H. Zhang, Y. Pan, Y. Lv., Y. Yang, F. Li, S. Zhang, F. Huang and Y. Ma, Electrochemical route to fabricate film-like conjugated microporous polymers and application for organic electronics, Adv. Mater., 2013, 25, 3443-3448.
5. F. Svec, J. Germain and J. M. J. Frechet, Nanoporous polymers for hydrogen Storage, Small, 2009, 5, 1098-1111.
6. R. Dawson, D. J. Adams and A. I. Cooper, Chemical tuning of CO2 sorption in robust nanoporous organic polymers, Chem. Sci., 2011, 2, 1173-1177.
7. N. B. McKeown and P. M. Budd, Exploitation of intrinsic microporosity in polymer-based materials, Macromolecules, 2010, 43, 5163-5176.
8. N. Du, H. B. Park, G. P. Robertson, M. M. Dal-Cin, T. Visser, L. Scoles and M. D. Guiver, Polymer nanosieve membranes for CO2-Capture applications, Nat. Mater., 2011, 10, 372-375.
9. J. X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak and A. I. Cooper, Conjugated microporous poly(aryleneethynylene) networks, Angew. Chem., Int. Ed., 2007, 46, 8574-8578.
10. Y. Xu, S. Jin, H. Xu, A. Nagai and D. Jiang, Conjugated microporous polymers: design, synthesis and application, Chem. Soc. Rev., 2013, 42, 8012-8031.
11. H. M. El-Kaderi, J. R. Hunt, J. L. Mendoza-Cortes, A. P. Cote, R. E. Taylor, M. O’Keeffe and O. M. Yaghi, Designed synthesis of 3D covalent organic frameworks,Science, 2007,316(5822), 268–272.
12. H. Furukawa and O. M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications J. Am. Chem. Soc., 2009, 131, 8875-8883.
13. X. Feng, X. Ding and D. Jiang, Covalent organic frameworks, Chem. Soc. Rev., 2012, 41, 6010-6022.
14. P. Kuhn, M. Antonietti and A. Thomas, Porous, covalent Triazine-based frameworks prepared by ionothermal synthesis, Angew. Chem., Int. Ed., 2008, 47, 3450-3453.
15. S. Ren, M. J. Bojdys, R. Dawson, A. Laybourn, Y. Z. Khimyak, D. J. Adams and A. I. Cooper, Porous, fluorescent, covalent triazine-based frameworks via room- temperature and microwave-assisted Synthesis, Adv. Mater., 2012, 24, 2357-2361.
16. C. D. Wood, B. Tan, A. Trewin, H. Niu, D. Bradshaw, M. J. Rosseinsky, Y. Z. Khimyak, N. L. Campbell, R. Kirk, E. Stoeckel and A. I. Cooper, Hydrogen storage in microporous hypercrosslinked organic polymer Networks, Chem. Mater., 2007, 19, 2034-2048.
17. T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu and G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area, Angew. Chem., Int. Ed., 2009, 48, 9457-9460.
18. T. Ben, C. Pei, D. Zhang, J. Xu, F. Deng, X. Jing and S. Qiu, Gas storage in porous aromatic Frameworks (PAFs), Energy Environ. Sci., 2011, 4, 3991-3999.
19. N. B. McKeown and P. M. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev., 2006, 35, 675-683.
20. Y. Xia, R. Mokaya, G. S. Walker and Y. Zhu, Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite, Adv. Energy Mater., 2011, 1, 678-683.
21. J. Wang, I. Senkovska, M. Oschatz, M. R. Lohe, L. Borchardt, A. Heerwig, Q. Liu and S. Kaskel, Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO2 capture, J. Mater. Chem. A, 2013, 1,10951-10961.
22. G.-P. Hao, W.-C. Li, D. Qian, G.-H. Wang, W.-P. Zhang, T. Zhang, A.-Q. Wang, F. Schueth, H.-J. Bongard and A.-H. Lu, Tetrathienoanthracene-based copocymers for efficient solar cells, J. Am. Chem. Soc., 2011, 133, 3284-3287.
23. Ruth Gomes and Asim Bhaumik, A new triazine functionalized luminescent covalent organic framework for nitroaromatic sensing and CO2 storage, RSC Adv., 2016, 6, 28047-28054.
24. Jiacheng Wang, Irena Senkovska, Martin Oschatz, Martin R. Lohe, Lars Borchardt, Andreas Heerwig, Qian Liua and Stefan Kaskel, Highly porous nitrogen-doped polyimine-based carbons with adjustable microstructures for CO2 capture, J. Mater Chem. A, 2013, 1, 10951-10961.
25. G.-P. Hao, W.-C. Li, D. Qian and A.-H. Lu, Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture, Adv. Mater., 2010, 22, 853-857.
26. Y. Chen, H. Sun, R. Yang, T. Wang, C. Pei, Z. Xiang, Z. Zhu, W. Liang, A. Li and W. Deng, Synthesis of conjugated microporous polymer nanotubes with large surface areas as absorbents for iodine and CO2 uptake, J. Mater. Chem. A, 2015, 3, 87-91.
27. A. Sigen, Y. Zhang, Z. Li, H. Xia, M. Xue, X. Liu and Y. Mu, Highly efficient and reversible iodine capture using a metalloporphyrin-based conjugated microporous polymer, Chem. Commun., 2014, 50, 8495-8498.
28. Z. Yan, Y. Yuan, Y. Tian, D. Zhang and G. Zhu, Highly efficient enrichment of volatile iodine by charged porous aromatic frameworks with three sorption sites, Angew. Chem. Int. Ed., 2015, 54, 12733-12737.
29. J. Goscianska, M. Marciniak and R. Pietrzak, Mesoporous carbons modified with lanthanum(III) chloride for methyl orange adsorption, Chem. Eng. J., 2014, 247, 258–264.
30. N. Boke, Z. G. Godongwana and L. F. Petrik, Synthesis of an ordered mesoporous carbon with graphitic characteristics and its application for dye adsorption, J. Porous Mater., 2013, 20, 1153–1161.
31. C. Liang and S. Dai, Dual phase separation for synthesis of bimodal meso-/macroporous carbon monoliths, Chem. Mater., 2009, 21, 2115–2124.
32. G. P. Hao, W. C. Li, S. Wang, G. H. Wang, L. Qi and A. H. Lu, Lysine-assisted rapid synthesis of crack-free hierarchical carbon monoliths with a hexagonal array of mesopores, Carbon, 2011, 49, 3762–3772.
33. . Liu, P. Yuan, D. Tan, H. Liu, T. Wang, M. Fan, J. Zhu and H. He, Facile preparation of hierarchically porous carbon using diatomite as both template and catalyst and methylene blue adsorption of carbon products, J. Colloid Interface Sci., 2012, 388, 176–184.
34. D. Liu, W. Yuan, P. Yuan, W. Yu, D. Tan, H. Liu and H. He, Physical activation of diatomite-templated carbons and its effect on the adsorption of methylene blue (MB), Appl. Surf. Sci., 2013, 282, 838–843.
35. X. Ma, Y. Li, M. Cao and C. Hu, A novel activating strategy to achieve highly porous carbon monoliths for CO2 capture, J. Mater. Chem. A, 2014, 2, 4819–4826.
36. D. Hulicova-Jurcakova, A. M. Puziy, O. I. Poddubnaya, F. Suárez-García, J. M. D. Tascón and G. Q. Lu, Highly stable performance of supercapacitors from phosphorus-enriched carbons, J. Am. Chem. Soc., 2009, 131, 5026–5027.
37. V. Chandra, S. U. Yu, S. H. Kim, Y. S. Yoon, D. Y. Kim, A. H. Kwon, M. Meyyappan and K. S. Kim, Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets Chem. Commun., 2012, 48, 735–737.
38. M. Sevilla, P. Valle-Vigón and A. B. Fuertes, N‐doped polypyrrole‐based porous carbons for CO2 capture, Adv. Funct. Mater., 2011, 21, 2781–2787.
39. L. Qie, W.-M. Chen, Z.-H. Wang, Q.-G. Shao, X. Li, L.-X. Yuan, X.-L. Hu, W.-X. Zhang and Y.-H. Huang, Nitrogen‐doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability, Adv. Mater., 2012, 24, 2047–2050.
40. G.-P. Hao, W.-C. Li, D. Qian, G.-H. Wang, W.-P. Zhang, T. Zhang, A.-Q. Wang, F. Schüth, H.-J. Bongard and A.-H. Lu, Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents, J. Am. Chem. Soc., 2011, 133, 11378–11388.
41. M. Nandi, K. Okada, A. Dutta, A. Bhaumik, J. Maruyama, D. Derks and H. Uyama, Unprecedented CO2 uptake over highly porous N-doped activated carbon monoliths prepared by physical activation, Chem. Commun., 2012, 48, 10283–10285.
42. Y. Xia and R. Mokaya, Synthesis of ordered mesoporous carbon and nitrogen‐doped carbon materials with graphitic pore walls via a simple chemical vapor deposition method, Adv. Mater., 2004, 16, 1553–1558.
43. Y. Zhao, X. Liu, K. X. Yao, L. Zhao and Y. Han, Superior capture of CO2 achieved by introducing extra-framework cations into N-doped microporous carbon, Chem. Mater., 2012, 24, 4725–4734.
44. B. Qiu, C. Pan, W. Qian, Y. Peng, L. Qiu and F. Yan, Nitrogen-doped mesoporous carbons originated from ionic liquids as electrode materials for supercapacitors, J. Mater. Chem. A, 2013, 1, 6373–6378.
45. Á. Sánchez-Sánchez, F. Suárez-García, A. Martínez-Alonso and J. M. D. Tascón, Influence of porous texture and surface chemistry on the CO2 adsorption capacity of porous carbons: acidic and basic site interactions, ACS Appl. Mater. Interfaces, 2014, 6, 21237–21247.
46. C. Zhang, M. Antonietti and T.-P. Fellinger, Blood ties: Co3O4 decorated blood derived carbon as a superior bifunctional electrocatalyst, Adv. Funct. Mater., 2014, 24, 7655–7665.
47. L. Liu, Q.-F. Deng, T.-Y. Ma, X.-Z. Lin, X.-X. Hou, Y.-P. Liu and Z.-Y. Yuan, Ordered mesoporous carbons: citric acid-catalyzed synthesis, nitrogen doping and CO2 capture, J. Mater. Chem., 2011, 21, 16001–16009.
48. I. Hamerton, Chemistry and Technology of Cyanate Ester Resins, Blackie, Glasgow, 1994.
49. B. F. Zhang, Z. G. Wang and X. Zhang, Synthesis and properties of a series of cyanate resins based on phenolphthalein and its derivatives, Polymer, 2009, 50, 817–824.
50. Changjiang Shen, Hao Yu and Zhonggang Wang, Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)-adamantane and its microporous polycyanurate network adsorption of organic vapors, hydrogen and carbon dioxide, Chem. Commun., 2014, 50, 11238-11241.
51. Changjiang Shen, Jun Yan, Gaoyang Deng, Biao Zhang and Zhonggang Wang, Synthetic modulation of micro- and mesopores in polycyanurate networks for adsorptions of gases and organic hydrocarbons, Polym. Chem., 2017, 8, 1074-1083.
52. D. Grande, O. Grigoryeva, A. Fainleib and K. Gusakova, Novel mesoporous high-performance films derived from polycyanurate networks containing high-boiling temperature liquids, Eur. Polym. J., 2013, 49, 2162–2171.
53. O. Grigoryeva, K. Gusakova, A. Fainleib and D. Grande, Nanopore generation in hybrid polycyanurate/poly(ε-caprolactone) thermostable networks, Eur. Polym. J., 2011, 47, 1736–1745.
54. D. Grande, O. Grigoryeva, K. Gusakova, A. Fainleib and C. Lorthioir, Porous thermosets via hydrolytic degradation of poly(ε-caprolactone) fragments in cyanurate-based hybrid networks, Eur. Polym. J., 2008, 44, 3588–3598.
55. A. M. Fainleib, K. Gusakova, O. Grigoryeva, O. Starostenko and D. Grande, Synthesis, morphology, and thermal stability of nanoporous cyanate ester resins obtained upon controlled monomer conversion, Eur. Polym. J., 2015, 73, 94–104.
56. C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt and O. M. Yaghi, Exceptional ammonia uptake by a covalent organic framework, Nat. Chem., 2010, 2, 235–238.
57. S. Wu, Y. Liu, G. Yu, J. Guan, C. Pan, Y. Du, X. Xiong and Z. Wang, Facile preparation of dibenzoheterocycle-functional nanoporous polymeric networks with high gas uptake capacities, Macromolecules, 2014, 47, 2875–2882.
58. T. Ben, H. Ren, S. Q. Ma, D. P. Cao, J. H. Lan, X. F. Jing, W. C. Wang, J. Xu, F. Deng, J. M. Simmons, S. L. Qiu and G. S. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area, Angew. Chem., Int. Ed., 2009, 48, 9457–9460.
59. Z. Xiang, R. Mercado, J. M. Huck, H. Wang, Z. Guo,W. Wang, D. Cao, M. Haranczyk and B. Smit, Systematic tuning and multifunctionalization of covalent organic polymers for enhanced carbon capture J. Am. Chem. Soc., 2015, 137, 13301–13307.
60. S. Y. Ding and W. Wang, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev., 2013, 42, 548–568.
61. P. Katekomol, J. Roeser, M. Bojdys, J. Weber and A. Thomas, Covalent triazine frameworks prepared from 1,3,5-tricyanobenzene, Chem. Mater., 2013, 25, 1542–1548.
62. Y. Liao, J. Weber and C. F. Faul, Fluorescent microporous polyimides based on perylene and triazine for highly CO2-selective carbon materials, Macromolecules, 2015, 48, 2064–2073.
63. C. J. Doonan, D. J. Tranchemontagne, T. G. Glover, J. R. Hunt and O. M. Yaghi, Exceptional ammonia uptake by a covalent organic framework, Nat. Chem., 2010, 2, 235–238.
64. Y. H. Xu, S. B. Jin, H. Xu, A. Nagai and D. L. Jiang, Conjugated microporous polymers: design, synthesis and application, Chem. Soc. Rev., 2013, 42, 8012–8031.
65. X. Fu, Y. Zhang, S. Gu, Y. Zhu, G. Yu, C. Pan, Z. Wang and Y. Hu, Metal microporous aromatic polymers with improved performance for small gas storage, Chem.–Eur. J., 2015, 21, 13357–13363.
66. Q. Li, J. D. Yang, Z. Feng, Q. Wu, S. S. Wu, C. Ha Park and D. Zhao, Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture, Nano Res., 2010, 3, 632–642.
67. S. Wan, J. Guo, J. Kim, H. Ihee and D. Jiang, A belt‐shaped, blue luminescent, and semiconducting covalent organic framework, Angew. Chem., Int. Ed., 2008, 120, 8958–8962.
68. H. Furukawa and O. M. Yaghi, Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications, J. Am. Chem. Soc., 2009, 131, 8875–8883.
69. J. L. Hedrick, T. P. Russell, J. C. Hedrick and J. G. Hilborn, Microporous polycyanurate networks, J. Polym. Sci., Part A: Polym. Chem., 1996, 34, 2879-2888.
70. B. F. Zhang and Z. G. Wang, Building ultramicropores within organic polymers based on a thermosetting cyanate ester resin, Chem. Commun., 2009, 33, 5027–5029.
71. H. Yu, C. J. Shen and Z. G. Wang, Micro‐ and mesoporous polycyanurate networks based on triangular units, ChemPlusChem, 2013, 78, 498–505.
72. H. Yu, C. J. Shen, M. Z. Tian, J. Qu and Z. G. Wang, Microporous cyanate resins: synthesis, porous structure, and correlations with gas and vapor adsorptions, Macromolecules, 2012, 45, 5140–5151.
73. J. R. Li, R. J. Kuppler and H. C. Zhou, Selective gas adsorption and separation in metal–organic frameworks, Chem. Soc. Rev., 2009, 38, 1477–1504.
74. J. Weber, N. Y. Du and M. D. Guiver, Influence of intermolecular interactions on the observable porosity in intrinsically microporous polymers, Macromolecules, 2011, 44, 1763–1767.
75. T. Panda, P. Pachfule, Y. Chen, J. Jiang and R. Banerjee, Amino functionalized zeolitic tetrazolate framework (ZTF) with high capacity for storage of carbon dioxide, Chem. Commun., 2011, 47, 2011–2013.
76. S. Hug, M. B. Mesch, H. Oh, N. Popp, M. Hirscher, J. Senker andB. V. Lotsch, A fluorene based covalent triazine framework with high CO2 and H2 capture and storage capacities, J. Mater. Chem. A, 2014, 2, 5928–5936.
77. G. Deng and Z. Wang, Triptycene-based microporous cyanate resins for adsorption/separations of benzene/cyclohexane and carbon dioxide gas, ACS Appl. Mater. Interfaces, 2017, 9, 41618-41627.
78. C. Falco, J. P. Marco-Lozar, D. Salinas-Torres, E. Morallón, D. Cazorla-Amorós, M. M. Titirici, D. Lozano-Castelló, Tailoring the porosity of chemically activated hydrothermal carbons: Influence of the precursor and hydrothermal carbonization temperature, Carbon, 2013, 62, 346-355.
79. Wan, L., Wang, J., Xie, L., Sun, Y. and Li, K., Nitrogen-enriched hierarchically porous carbons prepared from polybenzoxazine for high-performance supercapacitors. Appl. Mater. Interfaces, 2014, 6, 15583-15596.
80. Vazquez-Santos, M. B., Suarez-Garcia, F., Martinez-Alonso, A. and Tascon, J. M. Activated carbon fibers with a high heteroatom content by chemical activation of PBO with phosphoric acid, Langmuir, 2012, 28, 5850-5860.
81. M. Sevilla and A. B. Fuertes, CO2 adsorption by activated templated carbons, J. Colloid Interface Sci., 2012,366, 147-154.
82. L.-Y. Meng and S.-J. Park, Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers, J. Colloid Interface Sci., 2010, 352, 498-503.
83. W. Shen, S. Zhang, Y. He, J. Li and W. Fan, Hierarchical porous polyacrylonitrile-based activated carbon fibers for CO2 capture, J.Mater. Chem., 2011, 21, 14036-14040.
84. M. Sevilla and A. B. Fuertes, Sustainable porous carbons with a superior performance for CO2 capture, Energy Environ. Sci., 2011, 4, 1765-1771.
85. J. Wang, A. Heerwig, M. R. Lohe, M. Oschatz, L. Borchardt and S. Kaskel, Fungi-based porous carbons for CO2 adsorption and separation, J. Mater. Chem., 2012, 22, 13911-13913.
86. Jonathan M. R. Davies, Ian Hamerton, John R. Jones, David C. Povey, John M. Barton, Structure of 2, 2’-bis(4-cyanatophenyl)isopropylidene, Journal of Crystallographic and Spectroscopic Research, 1990, 20, 285-289.
87. K. Buttke, H.-J. Niclas, J. Prakt., Untersuchungen zur stereoselektiven elektrophilen cyanierung, Chem., 1998, 340, 669-675.
88. Unnikrishnan K. P., Thachil E. T., Hybrid polymer networks of epoxy resin and substituted phenolic novolacs, Int. J. Polym. Mater., 2006, 55, 563-576.
89. G. Xu, B. Ding, P. Nie, L. Shen, H. Dou and X. Zhang, Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 2013, 6, 194-199.
90. Sevilla, M., Falco, C., Titirici, M. M., Fuertes, A. B., High-performance CO2 sorbents from algae, RSC Adv., 2012, 2, 12792–12797.
91. Wang, J., Kaskel, S., KOH activation of carbon-based materials for energy storage, J. Mater. Chem., 2012, 22, 23710–23725.
92. Gregg, S. J., Sing, K. S. W., Adsorption, Surface Area and Porosity, Academic Press: New York, NY, USA, 1982.

chapter 2
1. A. G. Slater and A. I. Cooper, Science, Function-led design of new porous materials, 2015, 348, 8075-8084.
2. J. Li, A. Corma and J. Yu, Synthesis of new zeolite structures, Chem. Soc. Rev., 2015, 44, 7112–7127.
3. M.-M. Titirici, R. J. White, N. Brun, V. L. Budarin, D. S. Su, F. del Monte, J. H. Clark and M. J. MacLachlan, Sustainable carbon materials, Chem. Soc. Rev., 2015, 44, 250–290.
4. Y. Zhang, B. Y. W. Hsu, C. Ren, X. Li and J. Wang, Silica-based nanocapsules: synthesis, structure control and biomedical applications, Chem. Soc. Rev., 2015, 44, 315–335.
5. J. R. Long and O. M. Yaghi, The pervasive chemistry of metal–organic frameworks, Chem. Soc. Rev., 2009, 38, 1213–1214.
6. S. Kitagawa, R. Kitaura and S. Noro, Functional porous coordination polymers, Angew. Chem., Int. Ed., 2004, 43, 2334–2375.
7. T. Tozawa, J. T. A. Jones, S. I. Swamy, S. Jiang, D. J. Adams, S. Shakespeare, R. Clowes, D. Bradshaw, T. Hasell, S. Y. Chong, C. Tang, S. Thompson, J. Parker, A. Trewin, J. Bacsa, A. M. Z. Slawin, A. Steiner and A. I. Cooper, Porous organic cages, Nat. Mater., 2009, 8, 973–978.
8. D. Wu, F. Xu, B. Sun, R. Fu, H. He and K. Matyjaszewski, Design and preparation of porous polymers, Chem. Rev., 2012, 112, 3959–4015.
9. R. Dawson, A. I. Cooper and D. J. Adams, Nanoporous organic polymer networks, Prog. Polym. Sci., 2012, 37, 530–563.
10. X. Feng, X. Ding and D. Jiang, Covalent organic frameworks, Chem. Soc. Rev., 2012, 41, 6010–6022.
11. S.-Y. Ding and W. Wang, Covalent organic frameworks (COFs): from design to applications, Chem. Soc. Rev., 2013, 42, 548–568.
12. N. Fontanals, R. M. Marce, F. Borrull and P. A. G. Cormack, Hypercrosslinked materials: preparation, characterisation and applications, Polym. Chem., 2015, 6, 7231–7244.
13. S. Xu, Y. Luo and B. Tan, Recent development of hypercrosslinked microporous organic polymers, Macromol. Rapid Commun., 2013, 34, 471–484.
14. J.-X. Jiang, F. Su, A. Trewin, C. D. Wood, N. L. Campbell, H. Niu, C. Dickinson, A. Y. Ganin, M. J. Rosseinsky, Y. Z. Khimyak and A. I. Cooper, Conjugated microporous poly(aryleneethynylene) networks, Angew. Chem., Int. Ed., 2007, 46, 8574–8578.
15. Y. Xu, S. Jin, H. Xu, A. Nagai and D. Jiang, Conjugated microporous polymers: design, synthesis and application, Chem. Soc. Rev., 2013, 42, 8012–8031.
16. P. M. Budd, B. S. Ghanem, S. Makhseed, N. B. McKeown, K. J. Msayib and C. E. Tattershall, Polymers of intrinsic microporosity (PIMs): robust, solution-processable, organic nanoporous materials, Chem. Commun., 2004, 0, 230–231.
17. N. B. McKeown and P. M. Budd, Polymers of intrinsic microporosity (PIMs): organic materials for membrane separations, heterogeneous catalysis and hydrogen storage, Chem. Soc. Rev., 2006, 35, 675–683.
18. P. Kuhn, M. Antonietti and A. Thomas, Porous, covalent triazine‐based frameworks prepared by Ionothermal synthesis, Angew. Chem., Int. Ed., 2008, 47, 3450–3453.
19. S. Ren, M. J. Bojdys, R. Dawson, A. Laybourn, Y. Z. Khimyak, D. J. Adams and A. I. Cooper, Porous, fluorescent, covalent triazine‐based frameworks via room‐temperature and microwave‐assisted synthesis, Adv. Mater., 2012, 24, 2357–2361.
20. T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J. M. Simmons, S. Qiu and G. Zhu, Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area, Angew. Chem., Int. Ed., 2009, 48, 9457–9460.
21. T. Ben and S. Qiu, Porous aromatic frameworks: Synthesis, structure and functions, CrystEngComm, 2013, 15, 17–26.
22. M. P. Tsyurupa and V. A. Davankov, Hypercrosslinked polymers: Basic principle of preparing the new class of polymeric materials, React. Funct. Polym., 2002, 53, 193–203.
23. M. P. Tsyurupa and V. A. Davankov, Porous structure of hypercrosslinked polystyrene: State-of-the-art mini-review, React. Funct. Polym., 2006, 66, 768–779.
24. L. Tan and B. Tan, Research progress in hypercrosslinked microporous organic polymers, Acta Chim. Sin., 2015, 73, 530–540.
25. D. Bratkowska, N. Fontanals, F. Borrull, P. A. G. Cormack, D. C. Sherrington and R. M. Marce´, Hydrophilic hypercrosslinked polymeric sorbents for the solid-phase extraction of polar contaminants from water, J. Chromatogr. A, 2010, 1217, 3238–3243.
26. N. Fontanals, P. A. G. Cormack, D. C. Sherrington, R. M. Marce and F. Borrull, Weak anion-exchange hypercrosslinked sorbent in on-line solid-phase extraction-liquid chromatography coupling to achieve automated determination with an effective clean-up, J. Chromatogr. A, 2010, 1217, 2855–2861.
27. N. Fontanals, M. Galia, P. A. G. Cormack, R. M. Marce, D. C. Sherrington and F. Borrull, Evaluation of a new hypercrosslinked polymer as a sorbent for solid-phase extraction of polar compounds, J. Chromatogr. A, 2005, 1075, 51–56.
28. E. Candish, H.-J. Wirth, A. A. Gooley, R. A. Shellie and E. F. Hilder, Characterization of large surface area polymer monoliths and their utility for rapid, selective solid phase extraction for improved sample clean up, J. Chromatogr. A, 2015, 1410, 9–18.
29. V. V. Tolmacheva, V. V. Apyari, A. A. Furletov, S. G. Dmitrienko and Y. A. Zolotov, Facile synthesis of magnetic hypercrosslinked polystyrene and its application in the magnetic solid-phase extraction of sulfonamides from water and milk samples before their HPLC determination, Talanta, 2016, 152, 203–210.
30. D. Bratkowska, A. Davies, N. Fontanals, P. A. G. Cormack, F. Borrull, D. C. Sherrington and R. M. Marce, Hypercrosslinked strong anion‐exchange resin for extraction of acidic pharmaceuticals from environmental water, J. Sep. Sci.,2012, 35, 2621–2628.
31. M. P. Tsyurupa, Z. K. Blinnikova, Y. A. Borisov, M. M. Ilyin, T. P. Klimova, K. V. Mitsen and V. A. Davankov, Physicochemical and adsorption properties of hypercross‐linked polystyrene with ultimate cross‐linking density, J. Sep. Sci., 2014, 37, 803–810.
32. W.-Q. Wang, J. Wang, J.-G. Chen, X.-S. Fan, Z.-T. Liu, Z.-W. Liu, J. Jiang and Z. Hao, Synthesis of novel hyper-cross-linked polymers as adsorbent for removing organic pollutants from humid streams, Chem. Eng. J., 2015, 281, 34–41.
33. V. Davankov, M. Tsyurupa, M. Ilyin and L. Pavlova, Hypercross-linked polystyrene and its potentials for liquid chromatography: a mini-review, J. Chromatogr. A, 2002, 965, 65–73.
34. F. Svec, Preparation and HPLC applications of rigid macroporous organic polymer monoliths, J. Sep. Sci., 2004, 27, 747–766.
35. F. Svec and Y. Lv, Advances and recent trends in the field of monolithic columns for chromatography, Anal. Chem., 2015, 87, 250–273.
36. J. Germain, J. M. J. Fre´chet and F. Svec, Hypercrosslinked polyanilines with nanoporous structure and high surface area: potential adsorbents for hydrogen storage, J. Mater. Chem, 2007, 17, 4989–4997.
37. Muhammad Saleh, Han Myoung Lee, K. Christian Kemp, and Kwang S. Kim, Highly stable CO2/N2 and CO2/CH4 selectivity in hyper-cross-linked heterocyclic porous polymers, ACS Appl. Mater. Interfaces, 2014, 10, 7325-7333.
38. X. Zhu, S. M. Mahurin, S.-H. An, C.-L. Do-Thanh, C. Tian, Y. Li, L. W. Gill, E. W. Hagaman, Z. Bian, J.-H. Zhou, J. Hu, H. Liu and S. Dai, Efficient CO2 capture by a task-specific porous organic polymer bifunctionalized with carbazole and triazine groups, Chem. Commun., 2014, 50, 7933-7936.
39. X. Yang, M. Yu, Y. Zhao, C. Zhang, X. Wang and J.-X. Jiang, Hypercrosslinked microporous polymers based on carbazole for gas storage and separation, RSC Adv., 2014, 4, 61051–61055.
40. Yang X, Yu M, Zhao Y, Zhang C, Wang X, Jiang J-X, Remarkable gas adsorption by carbonized nitrogen-rich hypercrosslinked porous organic polymers, J. Mater. Chem. A, 2014, 2, 15139–15145.
41. Z. Li, D. Wu, X. Huang, J. Ma, H. Liu, Y. Liang, et al., Fabrication of novel polymeric and carbonaceous nanoscale networks by the union of selfassembly and hypercrosslinking, Energy Environ. Sci, 2014, 7, 3006-3012.
42. W. Zhao, Z. Hou, Z. Yao, X. Zhuang, F. Zhang, X. Feng, Hypercrosslinked porous polymer nanosheets: 2D RAFT agent directed emulsion polymerization for multifunctional applications, Polym. Chem., 2015, 6, 7171-7178.
43. R. Vinodh, A. Abidov, M.M. Peng, C.M. Babu, M. Palanichamy, W.S. Cha, et al., Synthesis and characterization of semiconducting porous carbon for energy applications and CO2 adsorption, J. Ind. Eng. Chem., 2015, 32, 273-281.
44. A. G. Pandolfo, A. F. Hollenkamp, Carbon properties and their role in supercapacitors, J. Power Sources, 2006, 157, 11-27.
45. G. Wang, L. Zhang and J. Zhang, A review of electrode materials for electrochemical supercapacitors, Chem. Soc. Rev., 2012, 41, 797-828.
46. P. Simon and Y. Gogotsi, Materials for electrochemical capacitors, Nat. Mater., 2008, 7, 845-854.
47. E. Frackowiak, Carbon materials for supercapacitor application, Phys. Chem. Chem. Phys., 2007, 9, 1774-1785.
48. L. L. Zhang and X. S. Zhao, Carbon-based materials as supercapacitor electrodes, Chem. Soc. Rev., 2009, 38, 2520-2531.
49. E. Frackowiak and FrançoisBéguinb, Carbon materials for the electrochemical storage of energy in capacitors, Carbon, 2001, 39, 937-950.
50. Q. Y. Huang, D. R. Wang, Z. J. Zheng, Textile‐based electrochemical energy storage devices, Adv. Energy Mater., 2016, 6, 1600783-1600983.
51. K. Jost, D. P. Durkin, L. M. Haverhals, E. K. Brown, M. Langenstein, H. C. De Long, P. C. Trulove, Y. Gogotsi, G. Dion, Natural fiber welded electrode yarns for knittable textile supercapacitors, Adv. Energy Mater., 2015, 5, 1401286-1401293.
52. B. C. Kim, J.-Y. Hong, G. G. Wallace, H. S. Park, Recent progress in flexible electrochemical capacitors: electrode materials, device configuration, and functions, Adv. Energy Mater., 2015, 5, 1500959-1500991.
53. D. Yu, S. Zhai, W. Jiang, K. Goh, L. Wei, X. Chen, R. Jiang, Y. Chen, Transforming pristine carbon fiber tows into high performance solid‐state fiber supercapacitors, Adv. Mater., 2015, 27, 4895-4901.
54. N. Li, G. Z. Yang, Y. Sun, H. W. Song, H. Cui, G. W. Yang, C. X. Wang, Free-standing and transparent graphene membrane of polyhedron box-shaped basic building units directly grown using a NaCl template for flexible transparent and stretchable solid-state supercapacitors, Nano Lett., 2015, 15, 3195-3203.
55. L. B. Wang, H. L. Yang, X. X. Liu, R. Zeng, M. Li, Y. H. Huang, X. L. Hu, Constructing hierarchical tectorum‐like α‐Fe2O3/PPy nanoarrays on carbon cloth for solid‐state asymmetric supercapacitors, Angew. Chem. Int. Ed., 2017, 56, 1105-1110.
56. Y. Huang, S. V. Kershaw, Z. Wang, Z. Pei, J. Liu, Y. Huang, H. Li, M. Zhu, A. L. Rogach, C. Zhi, Highly integrated supercapacitor-sensor systems via material and geometry design, Small, 2016, 12, 3393-3399.
57. X. H. Xia, J. Y. Zhan, Y. Zhong, X. L. Wang, J. P. Tu, H. J. Fan, Single‐crystalline, metallic TiC nanowires for highly robust and wide‐temperature electrochemical energy storage, Small, 2017, 13, 1602742-1602719.
58. C. Wang, H. Wu, Z. Chen, M. T. McDowell, Y. Cui, Z. N. Bao, Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries, Nat. Chem., 2013, 5, 1042-1048.
59. T. J. Trivedi, D. Bhattacharjya, J. Yu, A. Kumar, Functionalized agarose self‐healing ionogels suitable for supercapacitors, ChemSusChem, 2015, 8, 3294-3303.
60. H. Wang, B. Zhu, W. Jiang, Y. Yang, W. R. Leow, H. Wang, X. Chen, A mechanically and electrically self‐healing supercapacitor, Adv. Mater., 2014, 26, 3638-3643.
61. Z. Wang, F. Tao, Q. Pan, A self-healable polyvinyl alcohol-based hydrogel electrolyte for smart electrochemical capacitors, J. Mater. Chem. A, 2016, 4, 17732-17739.
62. Y. Guo, X. Zhou, Q. Tang, H. Bao, G. Wang, P. Saha, A self-healable and easily recyclable supramolecular hydrogel electrolyte for flexible supercapacitors, J. Mater. Chem. A, 2016, 4, 8769-8776.
63. S. L. Wang, N. S. Liu, J. Su, L. Y. Li, F. Long, Z. G. Zou, X. L. Jiang, Y. H. Gao, Highly stretchable and self-healable supercapacitor with reduced graphene oxide based fiber springs, ACS Nano, 2017, 11, 2066-2074.
64. Y. Huang, M. Zhu, Y. Huang, Z. Pei, H. Li, Z. Wang, Q. Xue, C. Zhi, Multifunctional energy storage and conversion devices, Adv. Mater., 2016, 28, 8344-8364.
65. Y. Huang, Y. Huang, M. Zhu, W. Meng, Z. Pei, C. Liu, H. Hu, C. Zhi, Magnetic-assisted, self-healable, yarn-based supercapacitor, ACS Nano, 2015, 9, 6242-6251.
66. Y. Yue, Z. C. Yang, N. S. Liu, W. J. Liu, H. Zhang, Y. N. Ma, C. X. Yang, J. Su, L. Y. Li, F. Long, Z. G. Zou, Y. H. Gao, A flexible integrated system containing a microsupercapacitor, a photodetector, and a wireless charging coil, ACS Nano, 2016, 10, 11249-11257.
67. Y. Huang, J. Y. Tao, W. J. Meng, M. S. Zhu, Y. Huang, Y. Q. Fu, Y. H. Gao, C. Y. Zhi, Super-high rate stretchable polypyrrole-based supercapacitors with excellent cycling stability, Nano Energy, 2015, 11, 518-525.
68. K. Wang, X. Zhang, C. Li, X. Sun, Q. Meng, Y. Ma, Z. Wei, Chemically crosslinked hydrogel film leads to integrated flexible supercapacitors with superior performance, Adv. Mater., 2015, 27, 7451-7457.
69. R. Dawson, L. Stevens, T. C. Drage, C. E. Snape, M. W. Smith, D. J. Adams, A. I. Cooper, Impact of water coadsorption for carbon dioxide capture in microporous polymer sorbents, J. Am. Chem. Soc., 2012, 134, 10741-10744.
70. G. Xu, B. Ding, P. Nie, L. Shen, H. Dou and X. Zhang, Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium–sulfur batteries, ACS Appl. Mater. Interfaces, 2013, 6, 194-199.
71. L. Chen, Y. Zhang, C. Lin, W. Yang, Y. Meng, Y. Guo, M. Li and D. Xiao, Hierarchically porous nitrogen-rich carbon derived from wheat straw as an ultra-high-rate anode for lithium ion batteries, J. Mater. Chem. A, 2014, 2, 9684-9690.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code