Responsive image
博碩士論文 etd-0713118-154821 詳細資訊
Title page for etd-0713118-154821
論文名稱
Title
La0.67Sr0.33MnO3 / YBa2Cu3O7-δ / SrTiO3 (001) 超晶格薄膜之物性研究
The Study of the Physical Properties of La0.67Sr0.33MnO3 / YBa2Cu3O7-δ Multi-layer Film Grown on SrTiO3 (001) using Pulsed Laser Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
104
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-31
繳交日期
Date of Submission
2018-08-14
關鍵字
Keywords
超導、磁性、三態超導、異質界面、電射濺鍍
triplet superconductivity, ferromagnetic, heterojunction, pulsed laser deposition, superconductivity
統計
Statistics
本論文已被瀏覽 5698 次,被下載 3
The thesis/dissertation has been browsed 5698 times, has been downloaded 3 times.
中文摘要
單超導理論於1957年發表,三態超導的概念即於次年提出。由於三態超導為無損耗的自旋電子流,對於自旋電子學的發展極為重要。至目前為止,三態超導只在低溫超導/鐵磁異質結構系統中發現,而且自2010年後即沒有新的發現。為了要研究三態超導於高溫超導/鐵磁系統中的可能性,本論文主要研究La0.67Sr0.33MnO3 / YBa2Cu3O7-δ/SrTiO3多層薄膜之最佳條件及其物理特性。
本研究以雷射濺鍍法於STO(00l)基板上成長單層YBCO薄膜、雙層LSMO/YBCO薄膜及多層[LSMO/YBCO]n薄膜。單層YBCO薄膜成長條件以改變成長溫度、成長氣壓及不同雷射脈沖數,而維持雷射脈沖頻率為5Hz。雙層LSMO/YBCO薄膜則以改變氣壓為主。最後多層LSMO/YBCO薄膜則固定YBCO厚度但改變LSMO厚度。薄膜物性量測上則有電阻-溫度 (R-T)、電流-電壓 (I-V)曲線量測、X-光繞射 (XRD) 分析薄膜晶體結構、原子力顯微鏡 (AFM) 觀察薄膜表面型貌、最後以穿透式電子顯微鏡 (TEM) 觀察微結構及成份。
研究發現最佳單層YBCO薄膜成長條件為830°C成長、純氧氣壓為200 mTorr共濺鍍6000發雷射脈沖。雙層及多層LSMO/YBCO薄膜均在最佳成長氣壓200mTorr成長。多層膜的最佳的表面平均平整度(RMS)為0.80 ± 0.07 nm(不計入表面出現的顆粒),而d005=2.3388 Å與理想結構誤差極小(0.017%),具有超導轉換啟始溫度90K及零電阻溫度87K,而LSMO電阻轉換溫度則高達353K。電性上,初步的Ic-H量測顯示Ic隨外加磁場而減少。以上數據顯示吾人已成功於STO(00l)基板上成長出高品質異質多層LSMO/YBCO薄膜。至於是否有三態超導存在於本多層薄膜樣品,有待未來更進一步研究,詳細量測XMCD及臨界電流與外磁場的關係。
Abstract
Triplet superconductivity was proposed in 1958, two years after the discovery of BCS theory and became significant in the modern years for it is possible for new applications such as the nondissipational spintronic. However, triplet superconductivity was realized only for low-Tc-superconductor/ferromagnet heterojunction, and no further development since 2010, when the last experiment was conducted. To explore the possibility of triplet superconducting state in high-Tc-superconductor/ferromagnet system, this research aims to develop and study the physical properties of La0.67Sr0.33MnO3 / YBa2Cu3O7-δ multi-layer film grown on SrTiO3 (001) substrate. Pulsed laser deposition (PLD) was the deposition method used to grow YBCO single layer film, LSMO/YBCO double-layer, and LSMO/YBCO multi-layer film on STO (001). YBCO single layer film was grown for varying growing temperature, varying growing pressure, and varying number of laser pulses for a laser frequency of 5 Hz. LSMO/YBCO double-layer film was grown for varying growing pressure. LSMO/YBCO multi-layer film was grown for varying number of pulses used to grow the LSMO film for a laser frequency of 5 Hz. In order to study the physical properties of the film, Resistance-Temperature (R-T) and Current-Voltage (I-V) measurements, X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM), Transmission Electron Microscopy (TEM) were carried out. For the growth of the YBCO single layer film, the optimum growing conditions were found to be 830°C, 200 mTorr, and 6000 pulses. For the growth of LSMO/YBCO double-layer film, the optimum growing pressure was 200 mTorr. For the growth of LSMO/YBCO multi-layer film, the film obtained a root mean square (RMS) as low as 0.80 ± 0.07 nm, a d005 spacing of 2.3388 Å with the lowest percent error of 0.0170%, a critical temperature (Tc) of the YBCO as high as 87 K with an onset at 90 K, and a transition temperature (TP) of the LSMO as high as 353 K. Moreover, our preliminary Ic-H measurements show that Ic decreases with stronger applied magnetic field. Whether or not these results indicate the existence of triplet superconducting state, no conclusion at the present state and further studies are needed. At least, these obtained data shows that the LSMO/YBCO multi-layer film was grown successfully on the STO (001) substrate. Our future plan is to conduct X-Ray Magnetic Circular Dichroism (XMCD) measurements to determine the magnetic properties between the interfaces of the heterostructure, and test the triplet superconducting properties of the material.
目次 Table of Contents
Thesis Evaluation i
Acknowledgements ii
Abstract (Chinese) iii
Abstract (English) iv
Table of Contents vi
Figures ix
Tables xv
Chapter 1: Introduction 1
1-1: Introduction to Superconductivity 1
1-2: Objectives of the Study 3
Chapter 2: Review of Related Literature 4
2-1: Magnetism 4
2-1-1: Diamagnetism 5
2-1-2: Paramagnetism 5
2-1-3: Ferromagnetism 7
2-1-4: Anti-ferromagnetism 7
2-1-5: Ferrimagnetism 9
2-2: Meissner Effect 9
2-3: Type I and Type II Superconductors 10
2-4: Triplet Superconductivity 11
2-4-1: BCS Theory 11
2-4-2: Spin-singlet and Spin-triplet States 13
2-4-3: Proximity Effect 14
2-5: YBa2Cu3O7-δ as a High-Tc Superconductor 17
2-6: La1-xSrxMnO3 as a Ferromagnetic Material 19
Chapter 3: Methodology 21
3-1: Cleaning of Substrate (SrTiO3) 21
3-2: Pulsed Laser Deposition 23
3-2-1: Laser System 23
3-2-2: Preparing the Substrate 25
3-2-3: Growing YBCO Single Layer on STO (001) 26
3-2-4: Growing LSMO/YBCO Double-layer on STO (001) 26
3-2-5: Growing LSMO/YBCO Multi-layer on STO (001) 27
3-3: Characterization of the Film 27
3-3-1: R-T and I-V Measurements 28
3-3-2: X-Ray Diffraction (XRD) 29
3-3-3: Atomic Force Microscopy (AFM) 31
3-3-4: Transmission Electron Microscopy (TEM) 32
Chapter 4: Results and Discussion 34
4-1: YBCO Single Layer 34
4-1-1: YBCO Single Layer (AFM Surface Morphology) 34
4-1-2: YBCO Single Layer (R-T Measurements) 35
4-1-3: YBCO Single Layer (XRD Measurements) 36
4-2: LSMO/YBCO Double-layer 38
4-2-1: LSMO/YBCO Double-layer (TEM Analysis) 38
4-2-2: LSMO/YBCO Double-layer (XRD Measurements) 42
4-2-3: LSMO/YBCO Double-layer (R-T Measurements) 43
4-3: LSMO/YBCO Multi-layer 44
4-3-1: LSMO/YBCO Multi-layer (AFM Morphologies) 45
4-3-2: LSMO/YBCO Multi-layer (XRD Measurements) 46
4-3-3: LSMO/YBCO Multi-layer (R-T Measurements) 48
4-3-4: LSMO/YBCO Multi-layer (I-V Measurements) 50
Chapter 5: Summary and Conclusion 54
References 56
Appendix 71
A. YBCO Singe Layer 71
B. LSMO/YBCO Double-layer 77
C. LSMO/YBCO Multi-layer 79
D. Scanning Electron Microscopy 80
E. JCPDS Database for X-Ray Diffraction 82
參考文獻 References
[1] C. Kittel.
Introduction to Solid State Physics, 8th Ed.
John Wiley & Sons, Inc. (2005).
[2] D. Van Delft, & P. Kes.
The discovery of superconductivity
Physics Today. American Institute of Physics.
[3] H. Zhou & X. Jin.
Stray field and vortex controlled magnetoresistance in superconducting Bi/Ni bilayers
Journal of Magnetism and Magnetic Materials (2018),
doi: https://doi.org/10.1016/j.jmmm. 2018.03.021
[4] J.S. Moodera, & R. Meservey
Superconducting phases of Bi and Ga induced by deposition on a Ni sublayer
Phys. Rev. B, 42 (1990), pp. 179-183 https://doi.org/10.1103/PhysRevB.42.179 URL
http://link.aps.org/doi/10.1103/PhysRevB.42.179
[5] P. LeClair, J.S. Moodera, J. Philip, D. Heiman
Coexistence of ferromagnetism and superconductivity in Ni/Bi bilayers
Phys. Rev. Lett., 94 (2005), p. 037006
https://doi.org/10.1103/PhysRevLett. 94.037006 URL
http://link.aps.org/doi/10.1103/PhysRevLett.94.037006
[6] G. Xin-Xin, et., al.
Possible p-wave superconductivity in epitaxial bi/ni bilayers
Chinese Physics Letters, 32 (6) (2015), p. 067402.
[7] H. Zhou, X. Gong, X. Jin
Magnetic properties of superconducting bi/ni bilayers
Journal of Magnetism and Magnetic Materials, 422 (2017), pp. 73–76
https://doi.org/10.1016/j.jmmm.2016.08.073 URL
http://www.sciencedirect.com/science/article/pii/S0304885316313427
[8] X. Gong, et., al.
Time-reversal symmetry-breaking superconductivity in epitaxial bismuth/nickel bilayers,
Science Advances 3 (3). arXiv:http://advances.sciencemag.org/content/3/3/e1602579.full.pdf,
doi:10.1126/sciadv.1602579. URL http://advances.sciencemag.org/content/3/3/e1602579
[9] Q. Li, et., al.
Pressure-induced structural phase transformation and superconducting properties of titanium mononitride
Solid State Communications, 271 (2018), pp. 16-20 https://doi.org/10.1016/j.ssc.2017.12.020
[10] T. Nakayama, et., al.
Fabrication of TiN/AlN/TiN tunnel junctions
Physica C: Superconductivity and its Applications, 530 (2016), pp. 87-89
https://doi.org/10.1016/j.physc.2016.04.005
[11] N.A. Sanford, et., al.
Laser-assisted atom probe tomography of Ti/TiN films deposited on Si
Micron, 94 (2017), pp. 53-65 https://doi.org/10.1016/j.micron.2016.12.001
[12] B. Altintas
On the high pressure superconductivity of transition metal nitride: TiN
Physica C: Superconductivity, 487 (2013), pp. 37-41
https://doi.org/10.1016/j.physc.2013.02.008
[13] Y. Chen, et., al.
Superconducting joint for MgB2 thin films by sol-gel method
Physica C: Superconductivity and its Applications, 542 (2017), pp. 34-39.
https://doi.org/10.1016/j.physc.2017.09.002
[14] J.G. Noudem, et., al.
Superconducting Properties of MgB2 Bulk Shaped by Spark Plasma Sintering
Materials Today: Proceedings 3 (2016), pp. 545-549 https://doi.org/10.1016/j.matpr.2016.01.088
[15] D. Shan, et., al.
The effect of Ti3SiC2 doping on the microstructure and superconducting properties of MgB2
Physica Procedia, 27 (2012), pp. 172-175 https://doi.org/10.1016/j.phpro.2012.03.438
[16] J.-C. Grivel
Influence of iridium doping in MgB2 superconducting wires
Physica C: Superconductivity and its Applications, 547 (2018), pp. 7-15
https://doi.org/10.1016/j.physc.2018.01.002
[17] R.Szcześniak, et., al.
Multi-band description of the specific heat and thermodynamic critical field in MgB2 superconductor
Physica B: Condensed Matter (2017) https://doi.org/10.1016/j.physb.2017.11.008
[18] N.P. Bansal, et., al.
Chemical synthesis of superconducting MgB2 nanopowder
Journal of Alloys and Compounds, 622 (2015), pp. 986-988
https://doi.org/10.1016/j.jallcom.2014.11.040
[19] A.Rosová, et., al.
Microstructure of MgB2 superconducting wire prepared by internal magnesium diffusion process
Journal of Alloys and Compounds, 619 (2015), pp. 726-732
https://doi.org/10.1016/j.jallcom.2014.08.180
[20] Y. Shimada, et., al.
Infiltration behavior of molten Mg and its influence on microstructural evlution in SiC- doped MgB2 wires prepared by internal Mg diffusion process
Journal of Alloys and Compounds, 740 (2018), pp. 305-311
https://doi.org/10.1016/j.jallcom.2018.01.012
[21] Y. Sugimoto, et., al.
Ferromagnetic Properties of SrRuO3 Thin Films Deposited on the Spin-Triplet Superconductor Sr2RuO4
Physica Procedia, 75 (2015), pp. 413-418 https://doi.org/10.1016/j.phpro.2015.12.050
[22] A. Sumiyama, et., al.
The Josephson effect in contacts between the spin-triplet superconductor Sr2RuO4 and conventional superconductors
Physica C: Superconductivity, 367 (2002), pp. 129-132
[23] K. Hasselbach, et., al.
Observation of vortex coalescence, vortex chains and crossing vortices in the anisotropic spin-triplet superconductor Sr2RuO4
Physica C: Superconductivity and its Applications, 460-462 (2007), pp. 277-280
https://doi.org/10.1016/j.physc.2007.03.338
[24] T. Nomura & K. Yamada
Theory of superconducting mechanism and gap structure of Sr2RuO4
Physica C: Superconductivity, 388-389 (2003), pp. 495-496
https://doi.org/10.1016/S0921-4534(02)02518-2
[25] I.G. Kaplan & J. Soullard
Influence of the electron correlation on the electonic structure of pure and Ti-doped Sr2RuO4 superconductor
Physica B: Condensed Matter, 403 (2008), pp. 1076-1077
https://doi.org/10.1016/j.physb.2007.10.091
[26] V. ˇStrbik, et., al.
Superconductor-ferromagnet-superconductor nanojunctions from perovskite materials
Applied Surface Science, 395 (2017), pp. 237-240
http://dx.doi.org/10.1016/j.apsusc.2016.08.044
[27] T.O. Owolabi, et., al.
Application of computational intelligence technique for estimating superconducting transition temperature of YBCO superconductors
Applied Soft Computing, 43 (2016), pp. 143-149
http://dx.doi.org/10.1016/j.asoc.2016.02.005
[28] S. Dadras & M. Davoudiniya
Analysis of YBCO high temperature superconductor doped with silver nanoparticles and carbon nanotubes using Williamson–Hall and size–strain plot
Physica C: Superconductivity and its Applications, 548 (2018), pp. 116-118
https://doi.org/10.1016/j.physc.2018.02.022Get rights and content
[29] G. Zechner, et., al.
Sign change of the vortex Hall effect in superconducting YBCO thin films with a square pattern of ion-irradiated defect columns
Physica C: Superconductivity and its Applications, 533 (2017), pp. 144-147
https://doi.org/10.1016/j.physc.2016.06.001
[30] T. Nurgaliev, et., al.
Magnetron sputtering of Fe-oxides on the top of HTS YBCO films
Journal of Magnetism and Magnetic Materials, 429 (2017), pp. 138-141
https://doi.org/10.1016/j.jmmm.2017.01.019
[31] D. Volochova, et., al.
YBCO bulk superconductors doped with gadolinium and samarium
Physica C: Superconductivity, 494 (2013), pp. 36-40
https://doi.org/10.1016/j.physc.2013.04.009
[32] S. Aghabagheri, et., al.
High temperature superconducting YBCO microwave filters
Physica C: Superconductivity and its Applications, 549 (2018), pp. 22-26
https://doi.org/10.1016/j.physc.2018.02.057
[33] S.E. Jasim, et., al.
Fabrication of Superconducting YBCO Nanoparticles by Electrospinning
Procedia Engineering, 148 (2016), pp. 243-248
https://doi.org/10.1016/j.proeng.2016.06.595
[34] S. Dadras, et., al.
Improving superconducting properties of YBCO high temperature superconductor by Graphene Oxide doping
Materials Chemistry and Physics, 193 (2017), pp. 496-500
https://doi.org/10.1016/j.matchemphys.2017.03.003
[35] B.T. Matthias, H. Suhl, & E. Corenzwit.
Ferromagnetic Superconductors
Phys. Rev. Lett. 1, 449-450 (1958).
[36] R.S. Keizer, et. al.
A spin triplet supercurent through the half-metallic ferromagnet CrO2
Nature 439, 825 (2006). https://doi.org/10.1038/nature04499
[37] C.M. Yen, et. al.
Superconducting Hc-Jc and Tc measurements in the Nb-Ti-N, Nb-Hf-N, and Nb-V-N ternary systems
J. Appl. Phys. 38, 2268 (1967); https://doi.org/10.1063/1.1709868
[38] C.L. Prajapat, et., al.
Proximity effects across oxide-interfaces of superconductor-insulator-ferromagnet hybrid heterostructure
Scientific Reports, 8, 3732 (2018) https://doi.org/10.1038/s41598-018-22036-y
[39] M. Sojkova, et., al.
LSMO/YBCO Heterostructures and Investigation of “Negative” Resistance Effect in the Interface
Acta Physica Polonica A, 131 (2017), pp. 842-844, https://doi.org/10.12693/APhysPolA.131.842
[40] M. Sharma, et., al.
Effect of superconducting spacer layer thickness on magneto-transport and magnetic properties of La0.7Sr0.3MnO3 / YBa2Cu3O7 / La0.7Sr0.3MnO3 heterostructures
Journal of Applied Physics, 115, 013901 (2014) https://doi.org/10.1063/1.4861139
[41] C.Z. Chen, Y. Li, & B. Wang
Tunable competition and possible coexistence between superconductivity and ferromagnetism in the multilayers of YBa2Cu3O7-delta / La0.67Sr0.33MnO3
Solid State Communications, 161 (2013), pp. 1-4 https://doi.org/10.1016/j.ssc.2013.02.004
[42] A.D. Huxley
Ferromagnetic Superconductors
Physica C, 514 (2015), pp. 368-377
http://dx.doi.org/10.1016/j.physc.2015.02.026
[43] H. Tanaka, et., al.
AC magnetic-field response of the ferromagnetic superconductor UGe2 with different magnetized states
Physical Review B, 97, 020509(R) (2018)
DOI: 10.1103/PhysRevB.97.020509
[44] Y. Noma, et., al.
Anisotropic Magnetic Fluctuations in Ferromagnetic Superconductor UGe2: Ge-73-NQR Study at Ambient Pressure
Journal of the Physical Society of Japan, 87, 033704 (2018)
https://doi.org/10.7566/JPSJ.87.033704
[45] T. Terashima, et., al.
Magnetic field effect on the T2 coefficient of the resistivity in the ferromagnetic superconductor UGe2
Physica B: Condensed Matter, 359-361 (2005), pp. 1060-1062
https://doi.org/10.1016/j.physb.2005.01.285
[46] K. Xia, et., al.
Spin-dependent transparency of ferromagnet/superconductor interfaces
Physical Review Letters, 89, 166603 (2002)
https://doi.org/10.1103/PhysRevLett.89.166603
[47] O. Bourgeois & R.C. Dynes
Strong coupled superconductor in proximity with a quench-condensed ferromagnetic Ni film: A search for oscillating T-c
Physical Review B, 65, 144503 (2002) https://doi.org/10.1103/PhysRevB.65.144503
[48] H. Greener, et., al.
Proximity effect in superconducting-ferromagnetic granular structures
Physical Review B, 97, 014520 (2018) https://doi.org/10.1103/PhysRevB.97.014520
[49] M.K. Wu, et., al.
Superconductivity at 93 K in a New Mixed-Phase Y-Ba-Cu-O Compound System at Ambient Pressure
Physical Review Letters, 58, 908 (1987) pp. 908-910
https://doi.org/10.1103/PhysRevLett.58.908
[50] K.W. Liu
Electronic Transport in YBa2Cu3O7-x/La0.7Sr0.3MnO3 Superconductivity / Ferromagnetic Superlattice
Master’s Thesis. National Sun Yat-Sen Univeristy, Kaohsiung, Taiwan (2017)
[51] The Editors of Encyclopedia Britannica
Antiferromagnetism. September 2011.
[Online]. Available: https://www.britannica.com/science/antiferromagnetism
[52] K. Fossheim & A. Sudbo
Superconductivity: Physics and Applications.
John Wiley & Sons Ltd., The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England.
[53] N.W. Ashcroft, N.D. Mermin
Solid State Physics
Saunders College Publishing, Harcourt College Publishers
[54] M. Eschrig
Spin-polarized supercurrents for spintronics: a review of current progress
Reports on Progress in Physics, 78, 104501 (50 pp.) (2015)
doi:10.1088/0034-4885/78/10/104501
[55] J. Bardeen, L. N. Cooper, & J. R. Schrieffer
Theory of Superconductivity.
Phys. Rev.108, 1175–1204 (1957).
[56] M. Eschrig
Spin-polarized supercurrents for spintronics
Physics Today, 64(1), 43 (2011) doi: 10.1063/1.3541944
[57] K.V. Grigorishin
BCS theory with the external pair potential
Physics Letters A, 381 (2017), pp. 3089-3100
https://doi.org/10.1016/j.physleta.2017.07.029
[58] C.P.J. Poole, et., al.
Superconductivity, 2nd Ed.
Elsevier B.V. (2007), pp. 171-193
[59] M. Nabeta, et., al.
Pair-breaking effects by parallel magnetic field in electric-field-induced surface superconductivity
Physica C: Superconductivity and its Applications, 530 (2016), pp. 8-10
https://doi.org/10.1016/j.physc.2016.04.006
[60] I.A. Garifullin, et., al.
The superconducting spin valve and triplet superconductivity
Journal of Magnetism and Magnetic Materials, 373 (2015), pp 18-22
https://doi.org/10.1016/j.jmmm.2014.04.002
[61] I.A. Garifullin
Proximity effects in ferromagnet/superconductor heterostructures
Journal of Magnetism and Magnetic Materials, 240 (2002), pp. 571-576
https://doi.org/10.1016/S0304-8853(01)00849-6
[62] A. Sharafiev, et., al.
HTS Josephson junctions arrays for high frequency mixing
Superconductor Science & Technology, 31, 035003 (2018)
https://doi.org/10.1088/1361-6668/aa9d48
[63] A.V. Samokhvalov, A.S. Mel’nikov, and A.I. Buzdin
Fulde-Ferrell-Larkin-Ovchinnikov states and quantum oscillations in mesoscopic superconductors and superfluid ultracold Fermi gases
Physical Review B, 82, 174514 (2010)
https://doi.org/10.1103/PhysRevB.82.174514
[64] J. Kajala, F. Massel, and P. Törmä
Expansion dynamics of the Fulde-Ferrel-Larkin-Ovchinnikov state
Physical Review A, 84, 041601(R) (2011)
https://doi.org/10.1103/PhysRevA.84.041601
[65] I.V. Bobkova, and A.M. Bobkov
In-plane Fulde-Ferrel-Larkin-Ovchinnikov instability in a superconductor–normal metal bilayer system under nonequilibrium quasiparticle distribution
Physical Review B, 88, 174502 (2013)
https://doi.org/10.1103/PhysRevB.88.174502
[66] S.W. Huang, et., al.
Selective interlayer ferromagnetic coupling between the Cu spins in YBa2Cu3O7−x grown on top of La0.7Ca0.3MnO3
Scientific Reports, 5, 16690 (2015)
https://doi.org/10.1038/srep16690
[67] J. Sungho
Processing and Properties of High-Tc Superconductors.
Singapore. World Scientific (1993)
[68] J.D. Jorgensen, et., al.
Oxygen ordering and the orthorhombic-to-tetragonal phase transition in YBa2Cu3O7-x
Physical Review B: Condensed Matter, 36(7) (1987) pp. 3608-3616
https://doi.org/10.1103/PhysRevB.36.3608
[69] Laboratory of Advanced Energy System, Helsinki University of Technology
High-Temperature Superconductivity.
[Online]. Available: http://www.tkk.fi/Units/AES/projects/prlaser/supercond.htm
[70] M. Ainslie
Transport AC loss in high temperature superconducting coils
PhD Dissertation. University of Cambridge (2012)
[71] C. Safranski
Resistance of the Superconducting Material YBCO
Undergraduate Thesis. California Polytechnic State University, San Luis Obispo, California (2010)
[72] B.A. Howe
Crystal Structure and Superconductivity of YBa2Cu3O7-x
Master’s Thesis. Minnesota State University, Mankato (2014)
[73] R.J. Cava
Oxide Superconductors
Journal of the American Ceramic Society, 83 (2000), pp. 5-28
https://doi.org/10.1111/j.1151-2916.2000.tb01142.x
[74] B. Oswald
Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd ed.
Elsevier (2005), ch. Superconducting Permanent Magnets: Potential Applications, pp. 1164-1166.
[75] R. Bertacco, et. al.
Proximity effects induced by a gold layer on La0.67Sr0.33MnO3 thin films
Appl. Phys. Lett. 91, 102506 (2007); https://doi.org/10.1063/1.2778353
[76] S. Majumdar, and S. Van Dijken
Pulsed laser deposition of La1-xSrxMnO3: thin-film properties and spintronics applications
Journal of Physics D: Applied Physics, 47 (2014) 034010
https://doi.org/10.1088/0022-3727/47/3/034010
[77] M. Spankova, et. al.
Characterization of epitaxial LSMO thin films with high Curie temperature prepared on different substrates
Vacuum 126 (2016) pp. 24-28, http://dx.doi.org/10.1016/j.vacuum.2016.01.009
[78] LOTIS TII Nd: YAG Laser System LS-2137U User’s Manual
Minsk 220030, Oktyabrskaya Str., 17, Republic of Belarus
[79] Physics Stack Exchange
Bragg’s diffraction – Huygen’s principle,
[Online].Available: https://physics.stackexchange.com/questions/297554/braggs-
diffraction-huygens-principle
[80] Modern Characterization of Materials.
Lecture 32: Powder X-Ray Diffraction
[Online]. Available: http://nptel.ac.in/courses/104103019/module5/lec32/7.html
[81] Department of Materials and Optoelectronic Science, National Sun Yat-Sen University
Field Emission Transmission Electron Microscope Laboratory
[Online] Available: http://e15.nsysu.edu.tw/files/11-1092-15015.php?Lang=zh-tw
[82] International Research Building, National Sun Yat-sen University
Field emission scanning electron microscope
[Online] Available: http://www.nano.nsysu.edu.tw/khvic/JL/JSM-6700F.htm
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code