Responsive image
博碩士論文 etd-0714102-203802 詳細資訊
Title page for etd-0714102-203802
論文名稱
Title
高效率摻釹釔鋁石榴石晶體光纖雷射之研製
The Study and Fabrication of Highly Efficient Nd:YAG Crystal Fiber Laser
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
80
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2002-07-05
繳交日期
Date of Submission
2002-07-14
關鍵字
Keywords
晶體光纖、釹、釔鋁石榴石、固態雷射
crystal fiber, solid state laser, Nd:YAG
統計
Statistics
本論文已被瀏覽 5669 次,被下載 3237
The thesis/dissertation has been browsed 5669 times, has been downloaded 3237 times.
中文摘要
中文摘要

近年來光電技術發展迅速,因而帶動半導體雷射激發固態雷射的發展。半導體雷射激發固態雷射可結合半導體雷射體積輕巧、高效能及低價格的特性,以及固態雷射高品質輸出模態的優點,且轉換效率高、壽命長、結構簡單,因此被廣泛地應用於電子、通信和醫療各業。本研究採用小尺寸之晶體光纖作為雷射增益介質,再於晶體光纖兩端鍍上光學薄膜做成共振腔,可大幅縮小雷射增益介質之體積,降低成本,簡化固態雷射整體架構,同時提高散熱效率。
我們使用雷射加熱基座生長(laser heated pedestal growth) 法生長晶體光纖,此法不但可輕易生長出直徑極小之單晶,且生長速度快、耗能低、控制容易,既經濟又迅速,且無坩堝污染之問題。利用此方法我們已生長出23~285 mm之高品質Nd:YAG晶體光纖,以適當的材質包覆,加以研磨、拋光、鍍膜即可製成Nd:YAG晶體光纖雷射。我們並進一步地量測晶體光纖內Nd3+離子濃度,發現在其橫截面上Nd3+離子濃度有內高外低的漸進式分佈,而使得光在此晶體光纖傳輸過程中有自聚焦的現象,再針對此現象進行分析。
目前,我們已成功研製出半導體雷射激發的Nd:YAG晶體光纖雷射,斜率效率為28.9%,就我們所知此為目前最高之紀錄,最高輸出功率達80mW。未來將改進晶體光纖的散熱方式、晶體光纖包覆的製作及晶體光纖表面之光學鍍膜,以提升轉換效率及輸出功率。


Abstract
Abstract

The rapid developments in optical and electronic technologies have accelerated developments of solid state laser technology. The diode-pumped solid state laser has the merits of the diode laser, such as compactness, low cost, and the merits of the solid state laser, such as high laser quality, high conversion efficiency, long lifetime, and simple structure. So, it has been applied in electronics, communication and medicine widely. In this work, the crystal fiber was used as the laser gain medium, and coated with optical thin film at its end facets as the laser cavity to be able to reduce largely the volume of solid-state laser, and improve the heat dissipation.
We used laser heated pedestal growth (LHPG) method to grow crystal fiber, which can grow with small diameters at very fast rate and accurate control. High quality Nd:YAG crystal fibers with diameter of 23~285 mm were grown. After cladding, grinding, polishing, and coating, we successfully fabricated the Nd:YAG crystal fiber laser. We discovered that the gradient concentration of Nd ions distributed over the cross section of crystal fiber is helpful in focusing lights.
We have successfully implemented diode-laser pumped Nd:YAG crystal fiber laser with a slope efficiency of 28.9%. It is the best result up to this time as we know. The maximum output power is 80 mW. In the future, we shall improve the cooling system, the cladding, and coating to further increase the conversion efficiency and output power.


目次 Table of Contents
目錄

誌謝 i
中文摘要 ii
英文摘要 iii
目錄 iv
圖目錄 v
表目錄 viii
第一章 緒論 1
第二章 Nd:YAG晶體光纖雷射原理 5
2.1 晶體特性 5
2.2 能階模型 11
2.3 傳輸模態 17
2.4 腔內損耗 21
第三章 晶體生長與元件製作 24
3.1 生長方法與架構 24
3.2 晶體光纖之清潔與包覆 30
3.3 元件之研磨與拋光 31
第四章 Nd:YAG晶體光纖量測 39
4.1 摻雜離子濃度量測與折射率分析 39
4.2 吸收率量測 48
第五章 Nd:YAG晶體光纖雷射製作 50
5.1 光學鍍膜 50
5.2 雷射輸出 52
5.3 結果分析 59
第六章 結論 61
參考資料 64
中英對照表 67

參考文獻 References
參考資料

[1] R. L. Byer, “Diode Laser-Pumped Solid-State Laser,” Science, vol. 239, pp. 742-747, February 1988.
[2] 霍玉晶,黃哲林,段玉生,周炳琨,“LD泵浦的整體式CW Nd:YAG單晶光纖激光器”,中國激光,第十七卷,第12期,1990年。
[3] J. L. Nightingale and R. L. Byer, “Monolithic Nd:YAG Fiber Laser,” Opt. Lett., vol. 11, no. 7, pp. 437-439, July 1986.
[4] M. M. Fejer, J. L. Nightingale, G. A. Magel and R. L. Byer, “Laser-Heated Miniature Pedestal Growth Apparatus for Single-Crystal Fibers,” Rev. Sci. Instrum., vol. 55, no. 11, pp. 1791-1796, November 1984.
[5] D. B. Gasson and B. Cockayne, “Oxide Crystal Growth using Gas Lasers,” J. of Materials Sci., vol. 5, pp. 100-104, 1970.
[6] J. Stone and C.A. Burrus, “Self-Contained LED-Pumped Single-Crystal Nd:YAG Fiber Laser,” Fiber Integrated Opt., vol. 2, no. 1, pp. 19-46, 1979.
[7] J. Stone and C. A. Burrus, “Neodymium-Doped Fiber Lasers: Room Temperature CW Operation with an Injection Laser Pump,” Appl. Opt., vol. 13, no. 6, pp. 1256-1258, June 1974.
[8] M. M. Fejer, G. A. Magel and R. L. Byer, “High-Speed High-Resolution Fiber Diameter Variation Measurement System,” Appl. Opt., vol. 24, pp. 2362-2368, 1985.
[9] S. Sudo, A. Cordova-Plaza, R. L. Byer and H. J. Shaw, “MgO:LiNbO3 Single-Crystal Fiber with Magnesium-Ion In-Diffused Cladding,” Opt. Lett., vol. 12, pp. 938-940, 1987.
[10] M. J. F. Digonnet, C. J. Gaeta, D. O’Meara and H. J. Shaw, “Clad Nd:YAG Fibers for Laser Applications,” J. of Lightwave Tech., vol. LT-5, no. 5, pp. 642-646, May 1987.
[11] 闕文修,姚熹,霍玉晶,“LD泵浦的Nd:MgO:LiNbO3單晶光纖腔外倍頻激光器”,中國激光,第22卷,第8期,1995年。
[12] A. Brenier, G. Foulon, M. Ferriol and G. Boulon, “The Laser-Heated-Pedestal Growth of LiNbO3:MgO Crystal Fibers with Ferroelectric Domain Inversion by In Situ Electric Field Poling,” J. Phys. D: Appl. Phys., vol. 30, pp. 37-39, 1997.
[13] C. A. Burrus and J. Stone, “Single-Crystal Fiber Optical Devices: A Nd:YAG Fiber Laser,” Appl. Phys. Lett., vol. 26, no. 6, pp. 318-320, March 1975.

[14] R. S. Feigelson, W. L. Kway and R. K. Route, “Single Crystal Fibers by the Laser-Heated Pedestal Growth Method,” Opt. Eng., vol. 24, no. 6, pp. 1102-1107, 1985.
[15] H. Eilers, W. M. Dennis and K. Peterman, “Performance of a Cr:YAG Laser, ” IEEE J. Quantum Electron., vol. 29, no. 9, pp. 2508-2512, 1993.
[16] K. R. Brown and D. A. Bonnell, “Segregation in Yttrium Aluminum Garnet: I, Experimental Determination,” J. Am. Ceram. Soc., vol. 82[9], pp. 2423-2430, 1999.
[17] 翁義龍,“ 腔內倍頻之被動式Q開關藍光雷射”,國立中山大學光電工程研究所碩士論文,2000年。
[18] W. Koechner, Solid-State Laser Enginnering, 5th Edition, Springer, 1999.
[19] G. P. Agrawal, Fiber-Optic Communication Systems, 2nd Edition, Wiley, 1997.
[20] M. J. F. Digonnet and C. J. Gaeta, “Theoretical Analysis of Optical Fiber Laser Amplifiers and Oscillators,” Appl. Opt., vol. 24, no. 3, pp. 333-342, February 1985.
[21] M. J. F. Digonnet, C. J. Gaeta and H. J. Shaw, “1.064- and 1.32-mm Nd:YAG Single Crystal Fiber Lasers,” J. of Lightwave Tech., vol. LT-4, no. 4, pp. 454-460, April 1986.
[22] P. F. Moulton, “An Investigation of Co:MgF2 Laser System,” IEEE J. Quantum Electron., vol. QE-21, no. 10, pp. 1582-1595, October 1985.
[23] B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley, 1991.
[24] 余樹楨,“晶體之結構與性質”,渤海堂,2000年。
[25] G. A. Magel, M. M. Fejer and R. L. Byer, “Quasi-Phase-Matched Second Harmonic Generation of Blue Light in Periodically Poled LiNbO3,” Appl. Phys. Lett., vol. 56, pp. 108-110, 1990.
[26] L. Hesseling and S. Redfield, “Photorefractive Holographic Recording in Strontium Barium Niobate Fiber,” Opt. Lett., vol. 13, pp. 877-879, 1988.
[27] R. S. Feigelson, D. Gazit and D. K. Fork, “Superconducting Bi-Ca-Sr-Cu-O Fibers Grown by the Laser-Heated Pedestal Growth Method,” Science, vol. 240, pp. 1642-1645, 1988.
[28] 張金倉,霍玉晶,何豫生,“激光加熱浮區生長強織構高溫超導晶纖的研究”,中國激光,第20卷,第8期,1993年。
[29] C. Goutaudier, F. S. Ermeneux, M. T. Cohen-Adad, R. Moncorge, M. Bettinelli and E. Cavalli, “LHPG and Flux Growth of Various Nd:YVO4 Single Crystals: A Comparative Characterization,” Mater. Res. Bull. vol. 33, no. pp. 1457-1465, 1998.
[30] http://www.exploratorium.edu/snacks/disappering_glass_rods.html

[31] L. E. Samuels, Metallographic Polishing by Mechanical Methods, 3rd Edition, ASM, 1982.
[32] R. S. Feigelson, “Pulling Optical Fibers,” J. of Crystal Growth, vol. 79, pp. 669-680, 1986.
[33] F. Lu, M. Q. Meng, K. M. Wang, X. D. Liu and H. C. Chen, “Refractive Index Profiles of Ion-Implantation Waveguides Formed on Lithium Niobate and Lithium Tantalate Crystals,” Jpn. J. Appl. Phys., vol. 36, no. 7A, pp. 4323-4325, July 1997.
[34] F. Caccacavale, P. Chakraborty, A. Quaranta, I. Mansour, G. Gianello, S. Bosso, R. Corsini, and G. Mussi, “Secondary-Ion-Mass Spectrometry and Near-Field Studies of Ti:LiNbO3 Optical Waveguides,” J. Appl. Phys., vol. 78, pp. 5345-5350, 1995.
[35] J. H. Sharp, R. Illingworth and I. S. Ruddock, “Graded-Index Characteristics in Single-Crystal Fibers,” Opt. Lett., vol. 23, no. 2, pp. 109-110, 1998.
[36] S. L. Huang, W. L. Wu, and P. L. Huang, “Measurement of Temperature Gradient in Diode-Laser-Pumped High-Power Solid-State Laser by Low-Coherence Reflectometry,” Appl. Phys. Lett., vol. 73, pp. 3342-3344, 1998.
[37] A. Yariv, Optical Electronics in Modern Communications, New York, Oxford, 1997.
[38] A. C. Nilsson, E. K. Gustafson, and R. L. Byer, “Eigenpolarization Theory of Monolithic Nonplanar Ring Oscillators,” IEEE J. Quantum Electron., vol. 25, no 4, pp. 767-790, 1989.
[39] S. Ishibashi and K. Naganuma, “Diode-pumped Cr4+:YAG single-crystal fiber laser,” in Advanced Solid-State Lasers, OSA Technical Digest, pp. 426-430, 2000.





電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code